Summary: | Even when conventional breeding was effective in achieving a continuous improvement in yield, Molecular Genetics tools applied in plant breeding contributed to maximize genetic gain. Thus, the use of DNA technology applied in agronomic improvement gave rise to Molecular Breeding, discipline which groups the different breeding strategies where genotypic selection, based on DNA markers, are used in combination with or in replacement of phenotypic selection. These strategies can be listed as: marker-assisted selection; marker-assisted backcrossing; marker assisted recurrent selection; and genomic selection. Strong arguments have been made about the potential advantages that Molecular Breeding brings, although little has been devoted to discussing its feasibility in practical applications. The consequence of the lack of a deep analysis when implementing a strategy of Molecular Breeding is its failure, leading to many undesirable outcomes and discouraging breeders from using the technology. The aim of this work is to trigger a debate about the convenience of the use of Molecular Breeding strategies in a breeding program considering the DNA technology of choice, the complexity of the trait of agronomic interest to be improved, the expected accuracy in the selection, and the demanded resources.
|