A Molecular Imprinted Polymer as a Flow-Through Optical Sensor for Oxazepam

A flow-through optosensing system for oxazepam recognition with fluorescence detection was performed by means of a molecular imprinted polymer based on its acid hydrolysis product, 2-amino-5-chlorobenzophenone. The synthesis was conducted via a noncovalent imprinting methodology, using methacrylic a...

Full description

Bibliographic Details
Main Authors: Roberta G. Machicote, Marcela A. Castillo, Maria E. Pacheco, Liliana Bruzzone
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Analytical Methods in Chemistry
Online Access:http://dx.doi.org/10.1155/2018/6302609
Description
Summary:A flow-through optosensing system for oxazepam recognition with fluorescence detection was performed by means of a molecular imprinted polymer based on its acid hydrolysis product, 2-amino-5-chlorobenzophenone. The synthesis was conducted via a noncovalent imprinting methodology, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent. Hydrolysis (types and concentration of acids), polymer retention capacity, binding properties, and elution (selectivity and reversibility) conditions were optimized. The selected molecular imprinted polymer had a molar ratio composition of 1 : 6 : 45 (template : functional monomer : cross-linker). The proposed method was applied to the determination of oxazepam in a pharmaceutical formulation. External standard calibration, standard additions calibration, and Youden’s calibration were carried out in order to evaluate constant and proportional errors due to the matrix. The developed metabolite-based recognition system for benzodiazepines is an innovative procedure that could be followed in routine and quality control assays.
ISSN:2090-8865
2090-8873