An automated system for monitoring the use of personal protective equipment in the construction industry

We present a novel computer vision system which generates automated indicators of proper use of personal protective equipment(PPE) of great importance in the construction industry, specifically the use of safety helmet and high visibility vest. The system is built on a neural network architecture th...

Full description

Bibliographic Details
Main Authors: M. Massiris, J. A. Fernández, J. Bajo, C. Delrieux
Format: Article
Language:Spanish
Published: Universitat Politecnica de Valencia 2020-12-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/13243
id doaj-187c59f0f5ab446abc08d93bc139df9a
record_format Article
spelling doaj-187c59f0f5ab446abc08d93bc139df9a2021-04-02T20:17:44ZspaUniversitat Politecnica de ValenciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202020-12-01181687410.4995/riai.2020.132438284An automated system for monitoring the use of personal protective equipment in the construction industryM. Massiris0J. A. Fernández1J. Bajo2C. Delrieux3Universidad Nacional del SurUniversidad de ExtremaduraUniversidad Nacional del SurUniversidad Nacional del SurWe present a novel computer vision system which generates automated indicators of proper use of personal protective equipment(PPE) of great importance in the construction industry, specifically the use of safety helmet and high visibility vest. The system is built on a neural network architecture that works on digital images. First, the OpenPose network is used for the detection of anthropometric points of the visualized workers. These points are used next to automatically segment regions of interest (ROI) located about a worker’s head and trunk. On these ROIs, a neuronal classifier estimates the presence or absence of each PPE of interest. Obtained results in moving videos from drones or artphones show that our system is fully capable of carrying out a complete evaluation of usage indicators of these two PPEs without human intervention, with the main purpose of preventing potentially dangerous incidents in the workplace.https://polipapers.upv.es/index.php/RIAI/article/view/13243automatizaciónprevención de riesgos laboralesequipo de protección personalredes neuronalesvisión por computador
collection DOAJ
language Spanish
format Article
sources DOAJ
author M. Massiris
J. A. Fernández
J. Bajo
C. Delrieux
spellingShingle M. Massiris
J. A. Fernández
J. Bajo
C. Delrieux
An automated system for monitoring the use of personal protective equipment in the construction industry
Revista Iberoamericana de Automática e Informática Industrial RIAI
automatización
prevención de riesgos laborales
equipo de protección personal
redes neuronales
visión por computador
author_facet M. Massiris
J. A. Fernández
J. Bajo
C. Delrieux
author_sort M. Massiris
title An automated system for monitoring the use of personal protective equipment in the construction industry
title_short An automated system for monitoring the use of personal protective equipment in the construction industry
title_full An automated system for monitoring the use of personal protective equipment in the construction industry
title_fullStr An automated system for monitoring the use of personal protective equipment in the construction industry
title_full_unstemmed An automated system for monitoring the use of personal protective equipment in the construction industry
title_sort automated system for monitoring the use of personal protective equipment in the construction industry
publisher Universitat Politecnica de Valencia
series Revista Iberoamericana de Automática e Informática Industrial RIAI
issn 1697-7912
1697-7920
publishDate 2020-12-01
description We present a novel computer vision system which generates automated indicators of proper use of personal protective equipment(PPE) of great importance in the construction industry, specifically the use of safety helmet and high visibility vest. The system is built on a neural network architecture that works on digital images. First, the OpenPose network is used for the detection of anthropometric points of the visualized workers. These points are used next to automatically segment regions of interest (ROI) located about a worker’s head and trunk. On these ROIs, a neuronal classifier estimates the presence or absence of each PPE of interest. Obtained results in moving videos from drones or artphones show that our system is fully capable of carrying out a complete evaluation of usage indicators of these two PPEs without human intervention, with the main purpose of preventing potentially dangerous incidents in the workplace.
topic automatización
prevención de riesgos laborales
equipo de protección personal
redes neuronales
visión por computador
url https://polipapers.upv.es/index.php/RIAI/article/view/13243
work_keys_str_mv AT mmassiris anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT jafernandez anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT jbajo anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT cdelrieux anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT mmassiris automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT jafernandez automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT jbajo automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
AT cdelrieux automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry
_version_ 1721547540613038080