An automated system for monitoring the use of personal protective equipment in the construction industry
We present a novel computer vision system which generates automated indicators of proper use of personal protective equipment(PPE) of great importance in the construction industry, specifically the use of safety helmet and high visibility vest. The system is built on a neural network architecture th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universitat Politecnica de Valencia
2020-12-01
|
Series: | Revista Iberoamericana de Automática e Informática Industrial RIAI |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/RIAI/article/view/13243 |
id |
doaj-187c59f0f5ab446abc08d93bc139df9a |
---|---|
record_format |
Article |
spelling |
doaj-187c59f0f5ab446abc08d93bc139df9a2021-04-02T20:17:44ZspaUniversitat Politecnica de ValenciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202020-12-01181687410.4995/riai.2020.132438284An automated system for monitoring the use of personal protective equipment in the construction industryM. Massiris0J. A. Fernández1J. Bajo2C. Delrieux3Universidad Nacional del SurUniversidad de ExtremaduraUniversidad Nacional del SurUniversidad Nacional del SurWe present a novel computer vision system which generates automated indicators of proper use of personal protective equipment(PPE) of great importance in the construction industry, specifically the use of safety helmet and high visibility vest. The system is built on a neural network architecture that works on digital images. First, the OpenPose network is used for the detection of anthropometric points of the visualized workers. These points are used next to automatically segment regions of interest (ROI) located about a worker’s head and trunk. On these ROIs, a neuronal classifier estimates the presence or absence of each PPE of interest. Obtained results in moving videos from drones or artphones show that our system is fully capable of carrying out a complete evaluation of usage indicators of these two PPEs without human intervention, with the main purpose of preventing potentially dangerous incidents in the workplace.https://polipapers.upv.es/index.php/RIAI/article/view/13243automatizaciónprevención de riesgos laboralesequipo de protección personalredes neuronalesvisión por computador |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
M. Massiris J. A. Fernández J. Bajo C. Delrieux |
spellingShingle |
M. Massiris J. A. Fernández J. Bajo C. Delrieux An automated system for monitoring the use of personal protective equipment in the construction industry Revista Iberoamericana de Automática e Informática Industrial RIAI automatización prevención de riesgos laborales equipo de protección personal redes neuronales visión por computador |
author_facet |
M. Massiris J. A. Fernández J. Bajo C. Delrieux |
author_sort |
M. Massiris |
title |
An automated system for monitoring the use of personal protective equipment in the construction industry |
title_short |
An automated system for monitoring the use of personal protective equipment in the construction industry |
title_full |
An automated system for monitoring the use of personal protective equipment in the construction industry |
title_fullStr |
An automated system for monitoring the use of personal protective equipment in the construction industry |
title_full_unstemmed |
An automated system for monitoring the use of personal protective equipment in the construction industry |
title_sort |
automated system for monitoring the use of personal protective equipment in the construction industry |
publisher |
Universitat Politecnica de Valencia |
series |
Revista Iberoamericana de Automática e Informática Industrial RIAI |
issn |
1697-7912 1697-7920 |
publishDate |
2020-12-01 |
description |
We present a novel computer vision system which generates automated indicators of proper use of personal protective equipment(PPE) of great importance in the construction industry, specifically the use of safety helmet and high visibility vest. The system is built on a neural network architecture that works on digital images. First, the OpenPose network is used for the detection of anthropometric points of the visualized workers. These points are used next to automatically segment regions of interest (ROI) located about a worker’s head and trunk. On these ROIs, a neuronal classifier estimates the presence or absence of each PPE of interest. Obtained results in moving videos from drones or artphones show that our system is fully capable of carrying out a complete evaluation of usage indicators of these two PPEs without human intervention, with the main purpose of preventing potentially dangerous incidents in the workplace. |
topic |
automatización prevención de riesgos laborales equipo de protección personal redes neuronales visión por computador |
url |
https://polipapers.upv.es/index.php/RIAI/article/view/13243 |
work_keys_str_mv |
AT mmassiris anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT jafernandez anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT jbajo anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT cdelrieux anautomatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT mmassiris automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT jafernandez automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT jbajo automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry AT cdelrieux automatedsystemformonitoringtheuseofpersonalprotectiveequipmentintheconstructionindustry |
_version_ |
1721547540613038080 |