On the abscises of the convergence of multiple Dirichlet series
For multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2013-01-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/26 |
id |
doaj-1875bd7b76f349a8b59cf54da713f473 |
---|---|
record_format |
Article |
spelling |
doaj-1875bd7b76f349a8b59cf54da713f4732020-11-25T03:33:21ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102013-01-011215216010.15330/cmp.1.2.152-16026On the abscises of the convergence of multiple Dirichlet seriesO. Yu. Zadorozhna0O. B. Skaskiv1Ivan Franko National University of LvivIvan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineFor multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1},$ where $e_{1}=(1,...,1)\in \mathbb{R}^p,\;\; \delta_0\in \mathbb{R},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p;$ $\gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta,$ where $\delta\in\mathbb{R}^{p},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.$http://journals.pu.if.ua/index.php/cmp/article/view/26 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
O. Yu. Zadorozhna O. B. Skaskiv |
spellingShingle |
O. Yu. Zadorozhna O. B. Skaskiv On the abscises of the convergence of multiple Dirichlet series Karpatsʹkì Matematičnì Publìkacìï |
author_facet |
O. Yu. Zadorozhna O. B. Skaskiv |
author_sort |
O. Yu. Zadorozhna |
title |
On the abscises of the convergence of multiple Dirichlet series |
title_short |
On the abscises of the convergence of multiple Dirichlet series |
title_full |
On the abscises of the convergence of multiple Dirichlet series |
title_fullStr |
On the abscises of the convergence of multiple Dirichlet series |
title_full_unstemmed |
On the abscises of the convergence of multiple Dirichlet series |
title_sort |
on the abscises of the convergence of multiple dirichlet series |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 2313-0210 |
publishDate |
2013-01-01 |
description |
For multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1},$ where $e_{1}=(1,...,1)\in \mathbb{R}^p,\;\; \delta_0\in \mathbb{R},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p;$ $\gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta,$ where $\delta\in\mathbb{R}^{p},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.$ |
url |
http://journals.pu.if.ua/index.php/cmp/article/view/26 |
work_keys_str_mv |
AT oyuzadorozhna ontheabscisesoftheconvergenceofmultipledirichletseries AT obskaskiv ontheabscisesoftheconvergenceofmultipledirichletseries |
_version_ |
1724563241264218112 |