On the abscises of the convergence of multiple Dirichlet series

For multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{...

Full description

Bibliographic Details
Main Authors: O. Yu. Zadorozhna, O. B. Skaskiv
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2013-01-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/26
id doaj-1875bd7b76f349a8b59cf54da713f473
record_format Article
spelling doaj-1875bd7b76f349a8b59cf54da713f4732020-11-25T03:33:21ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102013-01-011215216010.15330/cmp.1.2.152-16026On the abscises of the convergence of multiple Dirichlet seriesO. Yu. Zadorozhna0O. B. Skaskiv1Ivan Franko National University of LvivIvan Franko National University, 1 Universytetska str., 79000, Lviv, UkraineFor multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1},$ where $e_{1}=(1,...,1)\in \mathbb{R}^p,\;\; \delta_0\in \mathbb{R},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p;$ $\gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta,$ where $\delta\in\mathbb{R}^{p},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.$http://journals.pu.if.ua/index.php/cmp/article/view/26
collection DOAJ
language English
format Article
sources DOAJ
author O. Yu. Zadorozhna
O. B. Skaskiv
spellingShingle O. Yu. Zadorozhna
O. B. Skaskiv
On the abscises of the convergence of multiple Dirichlet series
Karpatsʹkì Matematičnì Publìkacìï
author_facet O. Yu. Zadorozhna
O. B. Skaskiv
author_sort O. Yu. Zadorozhna
title On the abscises of the convergence of multiple Dirichlet series
title_short On the abscises of the convergence of multiple Dirichlet series
title_full On the abscises of the convergence of multiple Dirichlet series
title_fullStr On the abscises of the convergence of multiple Dirichlet series
title_full_unstemmed On the abscises of the convergence of multiple Dirichlet series
title_sort on the abscises of the convergence of multiple dirichlet series
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2013-01-01
description For multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1},$ where $e_{1}=(1,...,1)\in \mathbb{R}^p,\;\; \delta_0\in \mathbb{R},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p;$ $\gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta,$ where $\delta\in\mathbb{R}^{p},$ by condition $\liminf\limits_{\|n\|\to\infty}\frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.$
url http://journals.pu.if.ua/index.php/cmp/article/view/26
work_keys_str_mv AT oyuzadorozhna ontheabscisesoftheconvergenceofmultipledirichletseries
AT obskaskiv ontheabscisesoftheconvergenceofmultipledirichletseries
_version_ 1724563241264218112