Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achie...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2015/165717 |
id |
doaj-187006d022764ca385565012e9402545 |
---|---|
record_format |
Article |
spelling |
doaj-187006d022764ca385565012e94025452020-11-24T23:05:07ZengHindawi LimitedInternational Journal of Antennas and Propagation1687-58691687-58772015-01-01201510.1155/2015/165717165717Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent SystemsErdem Demircioglu0Ahmet Fazil Yagli1Senol Gulgonul2Haydar Ankishan3Emre Oner Tartan4Murat H. Sazli5Taha Imeci6Turksat International Satellite Cable TV Operator, Golbasi, 06380 Ankara, TurkeyTurksat International Satellite Cable TV Operator, Golbasi, 06380 Ankara, TurkeyTurksat International Satellite Cable TV Operator, Golbasi, 06380 Ankara, TurkeyBaskent University, Technical Science MYO, Baglica, 06810 Ankara, TurkeyBaskent University, Technical Science MYO, Baglica, 06810 Ankara, TurkeyElectrics and Electronics Department, Ankara University, Golbasi, 06380 Ankara, TurkeyElectrical and Electronics Engineering Department, Istanbul Commerce University, Kucukyali, 34840 Istanbul, TurkeyThis paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achieve the best ANN performance, Particle Swarm Optimization (PSO) and Differential Evolution (DE) are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.http://dx.doi.org/10.1155/2015/165717 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Erdem Demircioglu Ahmet Fazil Yagli Senol Gulgonul Haydar Ankishan Emre Oner Tartan Murat H. Sazli Taha Imeci |
spellingShingle |
Erdem Demircioglu Ahmet Fazil Yagli Senol Gulgonul Haydar Ankishan Emre Oner Tartan Murat H. Sazli Taha Imeci Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems International Journal of Antennas and Propagation |
author_facet |
Erdem Demircioglu Ahmet Fazil Yagli Senol Gulgonul Haydar Ankishan Emre Oner Tartan Murat H. Sazli Taha Imeci |
author_sort |
Erdem Demircioglu |
title |
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems |
title_short |
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems |
title_full |
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems |
title_fullStr |
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems |
title_full_unstemmed |
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems |
title_sort |
slot parameter optimization for multiband antenna performance improvement using intelligent systems |
publisher |
Hindawi Limited |
series |
International Journal of Antennas and Propagation |
issn |
1687-5869 1687-5877 |
publishDate |
2015-01-01 |
description |
This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achieve the best ANN performance, Particle Swarm Optimization (PSO) and Differential Evolution (DE) are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking. |
url |
http://dx.doi.org/10.1155/2015/165717 |
work_keys_str_mv |
AT erdemdemircioglu slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems AT ahmetfazilyagli slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems AT senolgulgonul slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems AT haydarankishan slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems AT emreonertartan slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems AT murathsazli slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems AT tahaimeci slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems |
_version_ |
1725627381560901632 |