Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems

This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achie...

Full description

Bibliographic Details
Main Authors: Erdem Demircioglu, Ahmet Fazil Yagli, Senol Gulgonul, Haydar Ankishan, Emre Oner Tartan, Murat H. Sazli, Taha Imeci
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/165717
id doaj-187006d022764ca385565012e9402545
record_format Article
spelling doaj-187006d022764ca385565012e94025452020-11-24T23:05:07ZengHindawi LimitedInternational Journal of Antennas and Propagation1687-58691687-58772015-01-01201510.1155/2015/165717165717Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent SystemsErdem Demircioglu0Ahmet Fazil Yagli1Senol Gulgonul2Haydar Ankishan3Emre Oner Tartan4Murat H. Sazli5Taha Imeci6Turksat International Satellite Cable TV Operator, Golbasi, 06380 Ankara, TurkeyTurksat International Satellite Cable TV Operator, Golbasi, 06380 Ankara, TurkeyTurksat International Satellite Cable TV Operator, Golbasi, 06380 Ankara, TurkeyBaskent University, Technical Science MYO, Baglica, 06810 Ankara, TurkeyBaskent University, Technical Science MYO, Baglica, 06810 Ankara, TurkeyElectrics and Electronics Department, Ankara University, Golbasi, 06380 Ankara, TurkeyElectrical and Electronics Engineering Department, Istanbul Commerce University, Kucukyali, 34840 Istanbul, TurkeyThis paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achieve the best ANN performance, Particle Swarm Optimization (PSO) and Differential Evolution (DE) are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.http://dx.doi.org/10.1155/2015/165717
collection DOAJ
language English
format Article
sources DOAJ
author Erdem Demircioglu
Ahmet Fazil Yagli
Senol Gulgonul
Haydar Ankishan
Emre Oner Tartan
Murat H. Sazli
Taha Imeci
spellingShingle Erdem Demircioglu
Ahmet Fazil Yagli
Senol Gulgonul
Haydar Ankishan
Emre Oner Tartan
Murat H. Sazli
Taha Imeci
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
International Journal of Antennas and Propagation
author_facet Erdem Demircioglu
Ahmet Fazil Yagli
Senol Gulgonul
Haydar Ankishan
Emre Oner Tartan
Murat H. Sazli
Taha Imeci
author_sort Erdem Demircioglu
title Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
title_short Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
title_full Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
title_fullStr Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
title_full_unstemmed Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
title_sort slot parameter optimization for multiband antenna performance improvement using intelligent systems
publisher Hindawi Limited
series International Journal of Antennas and Propagation
issn 1687-5869
1687-5877
publishDate 2015-01-01
description This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs) using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN). To achieve the best ANN performance, Particle Swarm Optimization (PSO) and Differential Evolution (DE) are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.
url http://dx.doi.org/10.1155/2015/165717
work_keys_str_mv AT erdemdemircioglu slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
AT ahmetfazilyagli slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
AT senolgulgonul slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
AT haydarankishan slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
AT emreonertartan slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
AT murathsazli slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
AT tahaimeci slotparameteroptimizationformultibandantennaperformanceimprovementusingintelligentsystems
_version_ 1725627381560901632