Superlinear Singular Problems on the Half Line
<p/> <p>The paper studies the singular differential equation <inline-formula> <graphic file="1687-2770-2010-429813-i1.gif"/></inline-formula>, which has a singularity at <inline-formula> <graphic file="1687-2770-2010-429813-i2.gif"/></...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2010/429813 |
id |
doaj-185f7ba1ae78410c8bfd76f31821a93c |
---|---|
record_format |
Article |
spelling |
doaj-185f7ba1ae78410c8bfd76f31821a93c2020-11-24T21:42:57ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101429813Superlinear Singular Problems on the Half LineRachůnková IrenaTomeček Jan<p/> <p>The paper studies the singular differential equation <inline-formula> <graphic file="1687-2770-2010-429813-i1.gif"/></inline-formula>, which has a singularity at <inline-formula> <graphic file="1687-2770-2010-429813-i2.gif"/></inline-formula>. Here the existence of strictly increasing solutions satisfying <inline-formula> <graphic file="1687-2770-2010-429813-i3.gif"/></inline-formula> is proved under the assumption that <inline-formula> <graphic file="1687-2770-2010-429813-i4.gif"/></inline-formula> has two zeros 0 and <inline-formula> <graphic file="1687-2770-2010-429813-i5.gif"/></inline-formula> and a superlinear behaviour near <inline-formula> <graphic file="1687-2770-2010-429813-i6.gif"/></inline-formula>. The problem generalizes some models arising in hydrodynamics or in the nonlinear field theory.</p>http://www.boundaryvalueproblems.com/content/2010/429813 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rachůnková Irena Tomeček Jan |
spellingShingle |
Rachůnková Irena Tomeček Jan Superlinear Singular Problems on the Half Line Boundary Value Problems |
author_facet |
Rachůnková Irena Tomeček Jan |
author_sort |
Rachůnková Irena |
title |
Superlinear Singular Problems on the Half Line |
title_short |
Superlinear Singular Problems on the Half Line |
title_full |
Superlinear Singular Problems on the Half Line |
title_fullStr |
Superlinear Singular Problems on the Half Line |
title_full_unstemmed |
Superlinear Singular Problems on the Half Line |
title_sort |
superlinear singular problems on the half line |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2010-01-01 |
description |
<p/> <p>The paper studies the singular differential equation <inline-formula> <graphic file="1687-2770-2010-429813-i1.gif"/></inline-formula>, which has a singularity at <inline-formula> <graphic file="1687-2770-2010-429813-i2.gif"/></inline-formula>. Here the existence of strictly increasing solutions satisfying <inline-formula> <graphic file="1687-2770-2010-429813-i3.gif"/></inline-formula> is proved under the assumption that <inline-formula> <graphic file="1687-2770-2010-429813-i4.gif"/></inline-formula> has two zeros 0 and <inline-formula> <graphic file="1687-2770-2010-429813-i5.gif"/></inline-formula> and a superlinear behaviour near <inline-formula> <graphic file="1687-2770-2010-429813-i6.gif"/></inline-formula>. The problem generalizes some models arising in hydrodynamics or in the nonlinear field theory.</p> |
url |
http://www.boundaryvalueproblems.com/content/2010/429813 |
work_keys_str_mv |
AT rach367nkov225irena superlinearsingularproblemsonthehalfline AT tome269ekjan superlinearsingularproblemsonthehalfline |
_version_ |
1725916171755061248 |