Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls

We introduce a new geometric constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><...

Full description

Bibliographic Details
Main Authors: Asif Ahmad, Qi Liu, Yongjin Li
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1294
Description
Summary:We introduce a new geometric constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> based on a generalization of the parallelogram law, which is symmetric and related to the length of the inscribed quadrilateral side of the unit ball. We first investigate some basic properties of this new coefficient. Next, it is shown that, for a Banach space, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mi>i</mi><mi>n</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> becomes 16 if and only if the norm is induced by an inner product. Moreover, its properties and some relations between other well-known geometric constants are studied. Finally, a sufficient condition which implies normal structure is presented.
ISSN:2073-8994