Summary: | In this work, carbon nanosheet (CNS) based electrode was designed for electrochemical biosensing of glucose. CNS has been obtained by the pyrolysis of barley at 600â750 °C in a muffle furnace; it was then purified and functionalized. The CNS has been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopic techniques. The electrochemical activity of CNS-based electrode was investigated by linear sweep voltammetry (LSV) and square wave voltammetry (SWV), for the oxidation of glucose in 0.001 M H2SO4 (pH 6.0). The linear range of the sensor was found to be 10â4â10â6 M (1â100 µM) within the response time of 4 s. Interestingly, its sensitivity reached as high as ~26.002±0.01 μA/μM cm2. Electrochemical experiments revealed that the proposed electrode offered an excellent electrochemical activity towards the oxidation of glucose and could be applied for the construction of non-enzymatic glucose biosensors. Keywords: Carbon nanosheet, β-d glucose, Linear sweep voltammetry, Square wave voltammetry, Pharmaceutical analysis
|