Existence of fixed points on compact epilipschitz sets without invariance conditions
<p/> <p>We provide a new result of existence of equilibria of a single-valued Lipschitz function <inline-formula><graphic file="1687-1812-2005-603074-i1.gif"/></inline-formula> on a compact set <inline-formula><graphic file="1687-1812-2005-603074...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2005-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2005/603074 |
id |
doaj-183d47d1273e41d29adda2f591ff38f8 |
---|---|
record_format |
Article |
spelling |
doaj-183d47d1273e41d29adda2f591ff38f82020-11-25T00:23:16ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122005-01-0120053603074Existence of fixed points on compact epilipschitz sets without invariance conditionsQuincampoix MarcKamenskii Mikhail<p/> <p>We provide a new result of existence of equilibria of a single-valued Lipschitz function <inline-formula><graphic file="1687-1812-2005-603074-i1.gif"/></inline-formula> on a compact set <inline-formula><graphic file="1687-1812-2005-603074-i2.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-603074-i3.gif"/></inline-formula> which is locally the epigraph of a Lipschitz functions (such a set is called epilipschitz set). Equivalently this provides existence of fixed points of the map <inline-formula><graphic file="1687-1812-2005-603074-i4.gif"/></inline-formula>. The main point of our result lies in the fact that we do not impose that <inline-formula><graphic file="1687-1812-2005-603074-i5.gif"/></inline-formula> is an "inward vector" for all point <inline-formula><graphic file="1687-1812-2005-603074-i6.gif"/></inline-formula> of the boundary of <inline-formula><graphic file="1687-1812-2005-603074-i7.gif"/></inline-formula>. Some extensions of the existence of equilibria result are also discussed for continuous functions and set-valued maps.</p>http://www.fixedpointtheoryandapplications.com/content/2005/603074 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Quincampoix Marc Kamenskii Mikhail |
spellingShingle |
Quincampoix Marc Kamenskii Mikhail Existence of fixed points on compact epilipschitz sets without invariance conditions Fixed Point Theory and Applications |
author_facet |
Quincampoix Marc Kamenskii Mikhail |
author_sort |
Quincampoix Marc |
title |
Existence of fixed points on compact epilipschitz sets without invariance conditions |
title_short |
Existence of fixed points on compact epilipschitz sets without invariance conditions |
title_full |
Existence of fixed points on compact epilipschitz sets without invariance conditions |
title_fullStr |
Existence of fixed points on compact epilipschitz sets without invariance conditions |
title_full_unstemmed |
Existence of fixed points on compact epilipschitz sets without invariance conditions |
title_sort |
existence of fixed points on compact epilipschitz sets without invariance conditions |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2005-01-01 |
description |
<p/> <p>We provide a new result of existence of equilibria of a single-valued Lipschitz function <inline-formula><graphic file="1687-1812-2005-603074-i1.gif"/></inline-formula> on a compact set <inline-formula><graphic file="1687-1812-2005-603074-i2.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-603074-i3.gif"/></inline-formula> which is locally the epigraph of a Lipschitz functions (such a set is called epilipschitz set). Equivalently this provides existence of fixed points of the map <inline-formula><graphic file="1687-1812-2005-603074-i4.gif"/></inline-formula>. The main point of our result lies in the fact that we do not impose that <inline-formula><graphic file="1687-1812-2005-603074-i5.gif"/></inline-formula> is an "inward vector" for all point <inline-formula><graphic file="1687-1812-2005-603074-i6.gif"/></inline-formula> of the boundary of <inline-formula><graphic file="1687-1812-2005-603074-i7.gif"/></inline-formula>. Some extensions of the existence of equilibria result are also discussed for continuous functions and set-valued maps.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2005/603074 |
work_keys_str_mv |
AT quincampoixmarc existenceoffixedpointsoncompactepilipschitzsetswithoutinvarianceconditions AT kamenskiimikhail existenceoffixedpointsoncompactepilipschitzsetswithoutinvarianceconditions |
_version_ |
1716179915090427904 |