Existence of fixed points on compact epilipschitz sets without invariance conditions

<p/> <p>We provide a new result of existence of equilibria of a single-valued Lipschitz function <inline-formula><graphic file="1687-1812-2005-603074-i1.gif"/></inline-formula> on a compact set <inline-formula><graphic file="1687-1812-2005-603074...

Full description

Bibliographic Details
Main Authors: Quincampoix Marc, Kamenskii Mikhail
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2005/603074
id doaj-183d47d1273e41d29adda2f591ff38f8
record_format Article
spelling doaj-183d47d1273e41d29adda2f591ff38f82020-11-25T00:23:16ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122005-01-0120053603074Existence of fixed points on compact epilipschitz sets without invariance conditionsQuincampoix MarcKamenskii Mikhail<p/> <p>We provide a new result of existence of equilibria of a single-valued Lipschitz function <inline-formula><graphic file="1687-1812-2005-603074-i1.gif"/></inline-formula> on a compact set <inline-formula><graphic file="1687-1812-2005-603074-i2.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-603074-i3.gif"/></inline-formula> which is locally the epigraph of a Lipschitz functions (such a set is called epilipschitz set). Equivalently this provides existence of fixed points of the map <inline-formula><graphic file="1687-1812-2005-603074-i4.gif"/></inline-formula>. The main point of our result lies in the fact that we do not impose that <inline-formula><graphic file="1687-1812-2005-603074-i5.gif"/></inline-formula> is an "inward vector" for all point <inline-formula><graphic file="1687-1812-2005-603074-i6.gif"/></inline-formula> of the boundary of <inline-formula><graphic file="1687-1812-2005-603074-i7.gif"/></inline-formula>. Some extensions of the existence of equilibria result are also discussed for continuous functions and set-valued maps.</p>http://www.fixedpointtheoryandapplications.com/content/2005/603074
collection DOAJ
language English
format Article
sources DOAJ
author Quincampoix Marc
Kamenskii Mikhail
spellingShingle Quincampoix Marc
Kamenskii Mikhail
Existence of fixed points on compact epilipschitz sets without invariance conditions
Fixed Point Theory and Applications
author_facet Quincampoix Marc
Kamenskii Mikhail
author_sort Quincampoix Marc
title Existence of fixed points on compact epilipschitz sets without invariance conditions
title_short Existence of fixed points on compact epilipschitz sets without invariance conditions
title_full Existence of fixed points on compact epilipschitz sets without invariance conditions
title_fullStr Existence of fixed points on compact epilipschitz sets without invariance conditions
title_full_unstemmed Existence of fixed points on compact epilipschitz sets without invariance conditions
title_sort existence of fixed points on compact epilipschitz sets without invariance conditions
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2005-01-01
description <p/> <p>We provide a new result of existence of equilibria of a single-valued Lipschitz function <inline-formula><graphic file="1687-1812-2005-603074-i1.gif"/></inline-formula> on a compact set <inline-formula><graphic file="1687-1812-2005-603074-i2.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2005-603074-i3.gif"/></inline-formula> which is locally the epigraph of a Lipschitz functions (such a set is called epilipschitz set). Equivalently this provides existence of fixed points of the map <inline-formula><graphic file="1687-1812-2005-603074-i4.gif"/></inline-formula>. The main point of our result lies in the fact that we do not impose that <inline-formula><graphic file="1687-1812-2005-603074-i5.gif"/></inline-formula> is an "inward vector" for all point <inline-formula><graphic file="1687-1812-2005-603074-i6.gif"/></inline-formula> of the boundary of <inline-formula><graphic file="1687-1812-2005-603074-i7.gif"/></inline-formula>. Some extensions of the existence of equilibria result are also discussed for continuous functions and set-valued maps.</p>
url http://www.fixedpointtheoryandapplications.com/content/2005/603074
work_keys_str_mv AT quincampoixmarc existenceoffixedpointsoncompactepilipschitzsetswithoutinvarianceconditions
AT kamenskiimikhail existenceoffixedpointsoncompactepilipschitzsetswithoutinvarianceconditions
_version_ 1716179915090427904