A highly adaptive microbiome-based association test for survival traits
Abstract Background There has been increasing interest in discovering microbial taxa that are associated with human health or disease, gathering momentum through the advances in next-generation sequencing technologies. Investigators have also increasingly employed prospective study designs to survey...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-03-01
|
Series: | BMC Genomics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12864-018-4599-8 |
id |
doaj-1813a0bc4b924bac8e2653df058ad884 |
---|---|
record_format |
Article |
spelling |
doaj-1813a0bc4b924bac8e2653df058ad8842020-11-25T02:41:56ZengBMCBMC Genomics1471-21642018-03-0119111310.1186/s12864-018-4599-8A highly adaptive microbiome-based association test for survival traitsHyunwook Koh0Alexandra E. Livanos1Martin J. Blaser2Huilin Li3Department of Population Health, New York University School of MedicineDepartment of Medicine, Columbia University Medical CenterDepartments of Medicine and Microbiology, New York University School of MedicineDepartment of Population Health, New York University School of MedicineAbstract Background There has been increasing interest in discovering microbial taxa that are associated with human health or disease, gathering momentum through the advances in next-generation sequencing technologies. Investigators have also increasingly employed prospective study designs to survey survival (i.e., time-to-event) outcomes, but current item-by-item statistical methods have limitations due to the unknown true association pattern. Here, we propose a new adaptive microbiome-based association test for survival outcomes, namely, optimal microbiome-based survival analysis (OMiSA). OMiSA approximates to the most powerful association test in two domains: 1) microbiome-based survival analysis using linear and non-linear bases of OTUs (MiSALN) which weighs rare, mid-abundant, and abundant OTUs, respectively, and 2) microbiome regression-based kernel association test for survival traits (MiRKAT-S) which incorporates different distance metrics (e.g., unique fraction (UniFrac) distance and Bray-Curtis dissimilarity), respectively. Results We illustrate that OMiSA powerfully discovers microbial taxa whether their underlying associated lineages are rare or abundant and phylogenetically related or not. OMiSA is a semi-parametric method based on a variance-component score test and a re-sampling method; hence, it is free from any distributional assumption on the effect of microbial composition and advantageous to robustly control type I error rates. Our extensive simulations demonstrate the highly robust performance of OMiSA. We also present the use of OMiSA with real data applications. Conclusions OMiSA is attractive in practice as the true association pattern is unpredictable in advance and, for survival outcomes, no adaptive microbiome-based association test is currently available.http://link.springer.com/article/10.1186/s12864-018-4599-8Microbiome-based survival analysisMicrobiome-based association testCommunity-level association testMicrobial group analysisHigh-dimensional compositional data analysisPhylogenetic tree |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hyunwook Koh Alexandra E. Livanos Martin J. Blaser Huilin Li |
spellingShingle |
Hyunwook Koh Alexandra E. Livanos Martin J. Blaser Huilin Li A highly adaptive microbiome-based association test for survival traits BMC Genomics Microbiome-based survival analysis Microbiome-based association test Community-level association test Microbial group analysis High-dimensional compositional data analysis Phylogenetic tree |
author_facet |
Hyunwook Koh Alexandra E. Livanos Martin J. Blaser Huilin Li |
author_sort |
Hyunwook Koh |
title |
A highly adaptive microbiome-based association test for survival traits |
title_short |
A highly adaptive microbiome-based association test for survival traits |
title_full |
A highly adaptive microbiome-based association test for survival traits |
title_fullStr |
A highly adaptive microbiome-based association test for survival traits |
title_full_unstemmed |
A highly adaptive microbiome-based association test for survival traits |
title_sort |
highly adaptive microbiome-based association test for survival traits |
publisher |
BMC |
series |
BMC Genomics |
issn |
1471-2164 |
publishDate |
2018-03-01 |
description |
Abstract Background There has been increasing interest in discovering microbial taxa that are associated with human health or disease, gathering momentum through the advances in next-generation sequencing technologies. Investigators have also increasingly employed prospective study designs to survey survival (i.e., time-to-event) outcomes, but current item-by-item statistical methods have limitations due to the unknown true association pattern. Here, we propose a new adaptive microbiome-based association test for survival outcomes, namely, optimal microbiome-based survival analysis (OMiSA). OMiSA approximates to the most powerful association test in two domains: 1) microbiome-based survival analysis using linear and non-linear bases of OTUs (MiSALN) which weighs rare, mid-abundant, and abundant OTUs, respectively, and 2) microbiome regression-based kernel association test for survival traits (MiRKAT-S) which incorporates different distance metrics (e.g., unique fraction (UniFrac) distance and Bray-Curtis dissimilarity), respectively. Results We illustrate that OMiSA powerfully discovers microbial taxa whether their underlying associated lineages are rare or abundant and phylogenetically related or not. OMiSA is a semi-parametric method based on a variance-component score test and a re-sampling method; hence, it is free from any distributional assumption on the effect of microbial composition and advantageous to robustly control type I error rates. Our extensive simulations demonstrate the highly robust performance of OMiSA. We also present the use of OMiSA with real data applications. Conclusions OMiSA is attractive in practice as the true association pattern is unpredictable in advance and, for survival outcomes, no adaptive microbiome-based association test is currently available. |
topic |
Microbiome-based survival analysis Microbiome-based association test Community-level association test Microbial group analysis High-dimensional compositional data analysis Phylogenetic tree |
url |
http://link.springer.com/article/10.1186/s12864-018-4599-8 |
work_keys_str_mv |
AT hyunwookkoh ahighlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT alexandraelivanos ahighlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT martinjblaser ahighlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT huilinli ahighlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT hyunwookkoh highlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT alexandraelivanos highlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT martinjblaser highlyadaptivemicrobiomebasedassociationtestforsurvivaltraits AT huilinli highlyadaptivemicrobiomebasedassociationtestforsurvivaltraits |
_version_ |
1724776492778389504 |