Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival
Accumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, inclu...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | International Journal of Cell Biology |
Online Access: | http://dx.doi.org/10.1155/2012/872091 |
id |
doaj-180367eaef8f46cc8279934c7f0ee30b |
---|---|
record_format |
Article |
spelling |
doaj-180367eaef8f46cc8279934c7f0ee30b2020-11-24T23:52:42ZengHindawi LimitedInternational Journal of Cell Biology1687-88761687-88842012-01-01201210.1155/2012/872091872091Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and SurvivalLuke R. K. Hughson0Vincent I. Poon1Jaeline E. Spowart2Julian J. Lum3Deeley Research Centre, BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 6V5, CanadaDeeley Research Centre, BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 6V5, CanadaDeeley Research Centre, BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 6V5, CanadaDeeley Research Centre, BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 6V5, CanadaAccumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, including mitophagy, nucleophagy, and ubiquitin-mediated autophagy, counteract apoptotic signals by removing damaged cellular structures and by reprogramming cellular energy metabolism to cope with therapeutic stress. As a result, the efficacies of numerous current cancer therapies may be improved by combining them with adjuvant treatments that exploit or disrupt key metabolic processes induced by selective forms of autophagy. Targeting these metabolic irregularities represents a promising approach to improve clinical responsiveness to cancer treatments given the inherently elevated metabolic demands of many tumor types. To what extent anticancer treatments promote selective forms of autophagy and the degree to which they influence metabolism are currently under intense scrutiny. Understanding how the activation of selective forms of autophagy influences cellular metabolism and survival provides an opportunity to target metabolic irregularities induced by these pathways as a means of augmenting current approaches for treating cancer.http://dx.doi.org/10.1155/2012/872091 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luke R. K. Hughson Vincent I. Poon Jaeline E. Spowart Julian J. Lum |
spellingShingle |
Luke R. K. Hughson Vincent I. Poon Jaeline E. Spowart Julian J. Lum Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival International Journal of Cell Biology |
author_facet |
Luke R. K. Hughson Vincent I. Poon Jaeline E. Spowart Julian J. Lum |
author_sort |
Luke R. K. Hughson |
title |
Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival |
title_short |
Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival |
title_full |
Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival |
title_fullStr |
Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival |
title_full_unstemmed |
Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival |
title_sort |
implications of therapy-induced selective autophagy on tumor metabolism and survival |
publisher |
Hindawi Limited |
series |
International Journal of Cell Biology |
issn |
1687-8876 1687-8884 |
publishDate |
2012-01-01 |
description |
Accumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, including mitophagy, nucleophagy, and ubiquitin-mediated autophagy, counteract apoptotic signals by removing damaged cellular structures and by reprogramming cellular energy metabolism to cope with therapeutic stress. As a result, the efficacies of numerous current cancer therapies may be improved by combining them with adjuvant treatments that exploit or disrupt key metabolic processes induced by selective forms of autophagy. Targeting these metabolic irregularities represents a promising approach to improve clinical responsiveness to cancer treatments given the inherently elevated metabolic demands of many tumor types. To what extent anticancer treatments promote selective forms of autophagy and the degree to which they influence metabolism are currently under intense scrutiny. Understanding how the activation of selective forms of autophagy influences cellular metabolism and survival provides an opportunity to target metabolic irregularities induced by these pathways as a means of augmenting current approaches for treating cancer. |
url |
http://dx.doi.org/10.1155/2012/872091 |
work_keys_str_mv |
AT lukerkhughson implicationsoftherapyinducedselectiveautophagyontumormetabolismandsurvival AT vincentipoon implicationsoftherapyinducedselectiveautophagyontumormetabolismandsurvival AT jaelineespowart implicationsoftherapyinducedselectiveautophagyontumormetabolismandsurvival AT julianjlum implicationsoftherapyinducedselectiveautophagyontumormetabolismandsurvival |
_version_ |
1725472442001915904 |