Positivity, Betweenness, and Strictness of Operator Means
An operator mean is a binary operation assigned to each pair of positive operators satisfying monotonicity, continuity from above, the transformer inequality, and the fixed-point property. It is well known that there are one-to-one correspondences between operator means, operator monotone functions,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2015/851568 |
Summary: | An operator mean is a binary operation assigned to each pair of positive operators
satisfying monotonicity, continuity from above, the transformer inequality, and the fixed-point property. It is well known that there are one-to-one correspondences between operator means, operator monotone functions, and Borel measures. In this paper, we provide various characterizations for the concepts of positivity, betweenness, and strictness of operator means in terms of operator inequalities, operator monotone functions, Borel measures, and certain operator equations. |
---|---|
ISSN: | 1085-3375 1687-0409 |