99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors
Ross W Stephens,1 Gregory D Tredwell,1 Karen J Knox,1 Lee A Philip,1 David W King,1 Kelly M Debono,2 Jessica L Bell,1 Tim J Senden,1 Marcel R Tanudji,3 Jillean G Winter,3 Stephanie A Bickley,3 Michael J Tapner,3 Stephen K Jones3 1The Biomedical Radiochemistry Laboratory, Department of Applied Mathem...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2019-01-01
|
Series: | International Journal of Nanomedicine |
Subjects: | |
Online Access: | https://www.dovepress.com/99mtc-radiolabeled-composites-enabling-in-vivo-imaging-of-arterial-dis-peer-reviewed-article-IJN |
id |
doaj-17d1c7ea58ba4b3190e0f3d93139d745 |
---|---|
record_format |
Article |
spelling |
doaj-17d1c7ea58ba4b3190e0f3d93139d7452020-11-25T00:32:06ZengDove Medical PressInternational Journal of Nanomedicine1178-20132019-01-01Volume 148899004386899mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumorsStephens RWTredwell GDKnox KJPhilip LAKing DWDebono KMBell JLSenden TJTanudji MRWinter JGBickley SATapner MJJones SKRoss W Stephens,1 Gregory D Tredwell,1 Karen J Knox,1 Lee A Philip,1 David W King,1 Kelly M Debono,2 Jessica L Bell,1 Tim J Senden,1 Marcel R Tanudji,3 Jillean G Winter,3 Stephanie A Bickley,3 Michael J Tapner,3 Stephen K Jones3 1The Biomedical Radiochemistry Laboratory, Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT, Australia; 2Animal Services Division, Research School of Biology, Australian National University, Canberra, ACT, Australia; 3Research and Development, Sirtex Medical Limited, Sydney, NSW, Australia Purpose: Selective internal radiation therapy (SIRT) is an effective treatment option for liver tumors, using Y-90-loaded polymer microspheres that are delivered via catheterization of the hepatic artery. Since Y-90 is a beta emitter and not conveniently imaged by standard clinical instrumentation, dosimetry is currently evaluated in each patient using a surrogate particle, 99mTechnetium-labeled macroaggregated albumin (99mTc-MAA). We report a new composite consisting of 99mTc-labeled nanoparticles attached to the same polymer microspheres as used for SIRT, which can be imaged with standard SPECT.Methods: Carbon nanoparticles with an encapsulated core of 99mTc were coated with the polycation protamine sulfate to provide electrostatic attachment to anionic polystyrene sulfonate microspheres of different sizes (30, 12, and 8 µm). The in vivo stability of these composites was determined via intravenous injection and entrapment in the capillary network of normal rabbit lungs for up to 3 hours. Furthermore, we evaluated their biodistribution in normal rabbit livers, and livers implanted with VX2 tumors, following intrahepatic artery instillation. Results: We report distribution tests for three different sizes of radiolabeled microspheres and compare the results with those obtained using 99mTc-MAA. Lung retention of the radiolabeled microspheres ranged from 72.8% to 92.9%, with the smaller diameter microspheres showing the lowest retention. Liver retention of the microspheres was higher, with retention in normal livers ranging from 99.2% to 99.8%, and in livers with VX2 tumors from 98.2% to 99.2%. The radiolabeled microspheres clearly demonstrated preferential uptake at tumor sites due to the increased arterial perfusion produced by angiogenesis.Conclusion: We describe a novel use of radiolabeled carbon nanoparticles to generate an imageable microsphere that is stable in vivo under the shear stress conditions of arterial networks. Following intra-arterial instillation in the normal rabbit liver, they distribute in a distinct segmented pattern, with the smaller microspheres extending throughout the organ in finer detail, while still being well retained within the liver. Furthermore, in livers hosting an implanted VX2 tumor, they reveal the increased arterial perfusion of tumor tissue resulting from angiogenesis. These novel composites may have potential as a more representative mimic of the vascular distribution of therapeutic microspheres in patients undergoing SIRT. Keywords: liver cancer, SIRT, radiolabeled microspheres, medical imaginghttps://www.dovepress.com/99mtc-radiolabeled-composites-enabling-in-vivo-imaging-of-arterial-dis-peer-reviewed-article-IJNLiver cancerSIRTradiolabelled microspheresmedical imaging |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stephens RW Tredwell GD Knox KJ Philip LA King DW Debono KM Bell JL Senden TJ Tanudji MR Winter JG Bickley SA Tapner MJ Jones SK |
spellingShingle |
Stephens RW Tredwell GD Knox KJ Philip LA King DW Debono KM Bell JL Senden TJ Tanudji MR Winter JG Bickley SA Tapner MJ Jones SK 99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors International Journal of Nanomedicine Liver cancer SIRT radiolabelled microspheres medical imaging |
author_facet |
Stephens RW Tredwell GD Knox KJ Philip LA King DW Debono KM Bell JL Senden TJ Tanudji MR Winter JG Bickley SA Tapner MJ Jones SK |
author_sort |
Stephens RW |
title |
99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors |
title_short |
99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors |
title_full |
99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors |
title_fullStr |
99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors |
title_full_unstemmed |
99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors |
title_sort |
99mtc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1178-2013 |
publishDate |
2019-01-01 |
description |
Ross W Stephens,1 Gregory D Tredwell,1 Karen J Knox,1 Lee A Philip,1 David W King,1 Kelly M Debono,2 Jessica L Bell,1 Tim J Senden,1 Marcel R Tanudji,3 Jillean G Winter,3 Stephanie A Bickley,3 Michael J Tapner,3 Stephen K Jones3 1The Biomedical Radiochemistry Laboratory, Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT, Australia; 2Animal Services Division, Research School of Biology, Australian National University, Canberra, ACT, Australia; 3Research and Development, Sirtex Medical Limited, Sydney, NSW, Australia Purpose: Selective internal radiation therapy (SIRT) is an effective treatment option for liver tumors, using Y-90-loaded polymer microspheres that are delivered via catheterization of the hepatic artery. Since Y-90 is a beta emitter and not conveniently imaged by standard clinical instrumentation, dosimetry is currently evaluated in each patient using a surrogate particle, 99mTechnetium-labeled macroaggregated albumin (99mTc-MAA). We report a new composite consisting of 99mTc-labeled nanoparticles attached to the same polymer microspheres as used for SIRT, which can be imaged with standard SPECT.Methods: Carbon nanoparticles with an encapsulated core of 99mTc were coated with the polycation protamine sulfate to provide electrostatic attachment to anionic polystyrene sulfonate microspheres of different sizes (30, 12, and 8 µm). The in vivo stability of these composites was determined via intravenous injection and entrapment in the capillary network of normal rabbit lungs for up to 3 hours. Furthermore, we evaluated their biodistribution in normal rabbit livers, and livers implanted with VX2 tumors, following intrahepatic artery instillation. Results: We report distribution tests for three different sizes of radiolabeled microspheres and compare the results with those obtained using 99mTc-MAA. Lung retention of the radiolabeled microspheres ranged from 72.8% to 92.9%, with the smaller diameter microspheres showing the lowest retention. Liver retention of the microspheres was higher, with retention in normal livers ranging from 99.2% to 99.8%, and in livers with VX2 tumors from 98.2% to 99.2%. The radiolabeled microspheres clearly demonstrated preferential uptake at tumor sites due to the increased arterial perfusion produced by angiogenesis.Conclusion: We describe a novel use of radiolabeled carbon nanoparticles to generate an imageable microsphere that is stable in vivo under the shear stress conditions of arterial networks. Following intra-arterial instillation in the normal rabbit liver, they distribute in a distinct segmented pattern, with the smaller microspheres extending throughout the organ in finer detail, while still being well retained within the liver. Furthermore, in livers hosting an implanted VX2 tumor, they reveal the increased arterial perfusion of tumor tissue resulting from angiogenesis. These novel composites may have potential as a more representative mimic of the vascular distribution of therapeutic microspheres in patients undergoing SIRT. Keywords: liver cancer, SIRT, radiolabeled microspheres, medical imaging |
topic |
Liver cancer SIRT radiolabelled microspheres medical imaging |
url |
https://www.dovepress.com/99mtc-radiolabeled-composites-enabling-in-vivo-imaging-of-arterial-dis-peer-reviewed-article-IJN |
work_keys_str_mv |
AT stephensrw 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT tredwellgd 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT knoxkj 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT philipla 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT kingdw 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT debonokm 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT belljl 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT sendentj 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT tanudjimr 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT winterjg 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT bickleysa 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT tapnermj 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors AT jonessk 99mtcradiolabeledcompositesenablinginvivoimagingofarterialdispersalandretentionofmicrospheresinthevascularnetworkofrabbitlungsliverandlivertumors |
_version_ |
1725320897797029888 |