Optimized neural network based sliding mode control for quadrotors with disturbances

In this paper, optimized radial basis function neural networks (RBFNNs) are employed to construct a sliding mode control (SMC) strategy for quadrotors with unknown disturbances. At first, the dynamics model of the controlled quadrotor is built, where some unknown external disturbances are considered...

Full description

Bibliographic Details
Main Authors: Ping Li, Zhe Lin, Hong Shen, Zhaoqi Zhang, Xiaohua Mei
Format: Article
Language:English
Published: AIMS Press 2021-04-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/mbe.2021092?viewType=HTML
Description
Summary:In this paper, optimized radial basis function neural networks (RBFNNs) are employed to construct a sliding mode control (SMC) strategy for quadrotors with unknown disturbances. At first, the dynamics model of the controlled quadrotor is built, where some unknown external disturbances are considered explicitly. Then SMC is carried out for the position and the attitude control of the quadrotor. However, there are unknown disturbances in the obtained controllers, so RBFNNs are employed to approximate the unknown parts of the controllers. Furtherly, Particle Swarm optimization algorithm (PSO) based on minimizing the absolute approximation errors is used to improve the performance of the controllers. Besides, the convergence of the state tracking errors of the quadrotor is proved. In order to exposit the superiority of the proposed control strategy, some comparisons are made between the RBFNN based SMC with and without PSO. The results show that the strategy with PSO achieves quicker and smoother trajectory tracking, which verifies the effectiveness of the proposed control strategy.
ISSN:1551-0018