Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay
In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in the real natural ecosystem, impulsive diffusion provides a more suitable manner to model the actual dispersal (or migration) behavior for many ecological species. In addition,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/701545 |
id |
doaj-17cc49857521470f93f36df3f0121839 |
---|---|
record_format |
Article |
spelling |
doaj-17cc49857521470f93f36df3f01218392020-11-24T21:42:56ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/701545701545Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal DelayHaiyun Wan0Long Zhang1Zhidong Teng2College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, ChinaIn most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in the real natural ecosystem, impulsive diffusion provides a more suitable manner to model the actual dispersal (or migration) behavior for many ecological species. In addition, the species not only requires some time to disperse or migrate among the patches but also has some possibility of loss during dispersal. In view of these facts, a single species model with dissymmetric bidirectional impulsive diffusion and dispersal delay is formulated. Criteria on the permanence and extinction of species are established. Furthermore, the realistic conditions for the existence, uniqueness, and the global stability of the positive periodic solution are obtained. Finally, numerical simulations and discussion are presented to illustrate our theoretical results.http://dx.doi.org/10.1155/2014/701545 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Haiyun Wan Long Zhang Zhidong Teng |
spellingShingle |
Haiyun Wan Long Zhang Zhidong Teng Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay Journal of Applied Mathematics |
author_facet |
Haiyun Wan Long Zhang Zhidong Teng |
author_sort |
Haiyun Wan |
title |
Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay |
title_short |
Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay |
title_full |
Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay |
title_fullStr |
Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay |
title_full_unstemmed |
Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay |
title_sort |
analysis of a single species model with dissymmetric bidirectional impulsive diffusion and dispersal delay |
publisher |
Hindawi Limited |
series |
Journal of Applied Mathematics |
issn |
1110-757X 1687-0042 |
publishDate |
2014-01-01 |
description |
In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in the real natural ecosystem, impulsive diffusion provides a more suitable manner to model the actual dispersal (or migration) behavior for many ecological species. In addition, the species not only requires some time to disperse or migrate among the patches but also has some possibility of loss during dispersal. In view of these facts, a single species model with dissymmetric bidirectional impulsive diffusion and dispersal delay is formulated. Criteria on the permanence and extinction of species are established. Furthermore, the realistic conditions for the existence, uniqueness, and the global stability of the positive periodic solution are obtained. Finally, numerical simulations and
discussion are presented to illustrate our theoretical results. |
url |
http://dx.doi.org/10.1155/2014/701545 |
work_keys_str_mv |
AT haiyunwan analysisofasinglespeciesmodelwithdissymmetricbidirectionalimpulsivediffusionanddispersaldelay AT longzhang analysisofasinglespeciesmodelwithdissymmetricbidirectionalimpulsivediffusionanddispersaldelay AT zhidongteng analysisofasinglespeciesmodelwithdissymmetricbidirectionalimpulsivediffusionanddispersaldelay |
_version_ |
1725916273288675328 |