Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay

In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in the real natural ecosystem, impulsive diffusion provides a more suitable manner to model the actual dispersal (or migration) behavior for many ecological species. In addition,...

Full description

Bibliographic Details
Main Authors: Haiyun Wan, Long Zhang, Zhidong Teng
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/701545
Description
Summary:In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in the real natural ecosystem, impulsive diffusion provides a more suitable manner to model the actual dispersal (or migration) behavior for many ecological species. In addition, the species not only requires some time to disperse or migrate among the patches but also has some possibility of loss during dispersal. In view of these facts, a single species model with dissymmetric bidirectional impulsive diffusion and dispersal delay is formulated. Criteria on the permanence and extinction of species are established. Furthermore, the realistic conditions for the existence, uniqueness, and the global stability of the positive periodic solution are obtained. Finally, numerical simulations and discussion are presented to illustrate our theoretical results.
ISSN:1110-757X
1687-0042