A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)

SUMMARY PRDM14 functions in embryonic stem cell (ESC) maintenance to promote the expression of pluripotency-associated genes while suppressing differentiation genes. Expression of PRDM14 is tightly regulated and typically limited to ESCs and primordial germ cells; however, aberrant expression is ass...

Full description

Bibliographic Details
Main Authors: Brandi L. Carofino, Bernard Ayanga, Monica J. Justice
Format: Article
Language:English
Published: The Company of Biologists 2013-11-01
Series:Disease Models & Mechanisms
Online Access:http://dmm.biologists.org/content/6/6/1494
id doaj-17c784096fd342d287f39b469148bc38
record_format Article
spelling doaj-17c784096fd342d287f39b469148bc382020-11-25T00:57:27ZengThe Company of BiologistsDisease Models & Mechanisms1754-84031754-84112013-11-01661494150610.1242/dmm.012575012575A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)Brandi L. CarofinoBernard AyangaMonica J. JusticeSUMMARY PRDM14 functions in embryonic stem cell (ESC) maintenance to promote the expression of pluripotency-associated genes while suppressing differentiation genes. Expression of PRDM14 is tightly regulated and typically limited to ESCs and primordial germ cells; however, aberrant expression is associated with tumor initiation in a wide variety of human cancers, including breast cancer and leukemia. Here, we describe the generation of a Cre-recombinase-inducible mouse model for the spatial and temporal control of Prdm14 misexpression [ROSA26 floxed-stop Prdm14 (R26PR)]. When R26PR is mated to either of two Cre lines, Mx1-cre or MMTV-cre, mice develop early-onset T-cell acute lymphoblastic leukemia (T-ALL) with median overall survival of 41 and 64 days for R26PR;Mx1-cre and R26PR;MMTV-cre, respectively. T-ALL is characterized by the accumulation of immature single-positive CD8 cells and their widespread infiltration. Leukemia is preceded by a dramatic expansion of cells resembling hematopoietic stem cells and lymphoid-committed progenitors prior to disease onset, accompanied by a blockage in B-cell differentiation at the early pro-B stage. Rapid-onset PRDM14-induced T-ALL requires factors that are present in stem and progenitor cells: R26PR;dLck-cre animals, which express Prdm14 starting at the double-positive stage of thymocyte development, do not develop disease. PRDM14-induced leukemic cells contain high levels of activated NOTCH1 and downstream NOTCH1 targets, including MYC and HES1, and are sensitive to pharmacological inhibition of NOTCH1 with the γ-secretase inhibitor DAPT. Greater than 50% of human T-ALLs harbor activating mutations in NOTCH1; thus, our model carries clinically relevant molecular aberrations. The penetrance, short latency and involvement of the NOTCH1 pathway will make this hematopoietic R26PR mouse model ideal for future studies on disease initiation, relapse and novel therapeutic drug combinations. Furthermore, breeding R26PR to additional Cre lines will allow for the continued development of novel cancer models.http://dmm.biologists.org/content/6/6/1494
collection DOAJ
language English
format Article
sources DOAJ
author Brandi L. Carofino
Bernard Ayanga
Monica J. Justice
spellingShingle Brandi L. Carofino
Bernard Ayanga
Monica J. Justice
A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)
Disease Models & Mechanisms
author_facet Brandi L. Carofino
Bernard Ayanga
Monica J. Justice
author_sort Brandi L. Carofino
title A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)
title_short A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)
title_full A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)
title_fullStr A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)
title_full_unstemmed A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL)
title_sort mouse model for inducible overexpression of prdm14 results in rapid-onset and highly penetrant t-cell acute lymphoblastic leukemia (t-all)
publisher The Company of Biologists
series Disease Models & Mechanisms
issn 1754-8403
1754-8411
publishDate 2013-11-01
description SUMMARY PRDM14 functions in embryonic stem cell (ESC) maintenance to promote the expression of pluripotency-associated genes while suppressing differentiation genes. Expression of PRDM14 is tightly regulated and typically limited to ESCs and primordial germ cells; however, aberrant expression is associated with tumor initiation in a wide variety of human cancers, including breast cancer and leukemia. Here, we describe the generation of a Cre-recombinase-inducible mouse model for the spatial and temporal control of Prdm14 misexpression [ROSA26 floxed-stop Prdm14 (R26PR)]. When R26PR is mated to either of two Cre lines, Mx1-cre or MMTV-cre, mice develop early-onset T-cell acute lymphoblastic leukemia (T-ALL) with median overall survival of 41 and 64 days for R26PR;Mx1-cre and R26PR;MMTV-cre, respectively. T-ALL is characterized by the accumulation of immature single-positive CD8 cells and their widespread infiltration. Leukemia is preceded by a dramatic expansion of cells resembling hematopoietic stem cells and lymphoid-committed progenitors prior to disease onset, accompanied by a blockage in B-cell differentiation at the early pro-B stage. Rapid-onset PRDM14-induced T-ALL requires factors that are present in stem and progenitor cells: R26PR;dLck-cre animals, which express Prdm14 starting at the double-positive stage of thymocyte development, do not develop disease. PRDM14-induced leukemic cells contain high levels of activated NOTCH1 and downstream NOTCH1 targets, including MYC and HES1, and are sensitive to pharmacological inhibition of NOTCH1 with the γ-secretase inhibitor DAPT. Greater than 50% of human T-ALLs harbor activating mutations in NOTCH1; thus, our model carries clinically relevant molecular aberrations. The penetrance, short latency and involvement of the NOTCH1 pathway will make this hematopoietic R26PR mouse model ideal for future studies on disease initiation, relapse and novel therapeutic drug combinations. Furthermore, breeding R26PR to additional Cre lines will allow for the continued development of novel cancer models.
url http://dmm.biologists.org/content/6/6/1494
work_keys_str_mv AT brandilcarofino amousemodelforinducibleoverexpressionofprdm14resultsinrapidonsetandhighlypenetranttcellacutelymphoblasticleukemiatall
AT bernardayanga amousemodelforinducibleoverexpressionofprdm14resultsinrapidonsetandhighlypenetranttcellacutelymphoblasticleukemiatall
AT monicajjustice amousemodelforinducibleoverexpressionofprdm14resultsinrapidonsetandhighlypenetranttcellacutelymphoblasticleukemiatall
AT brandilcarofino mousemodelforinducibleoverexpressionofprdm14resultsinrapidonsetandhighlypenetranttcellacutelymphoblasticleukemiatall
AT bernardayanga mousemodelforinducibleoverexpressionofprdm14resultsinrapidonsetandhighlypenetranttcellacutelymphoblasticleukemiatall
AT monicajjustice mousemodelforinducibleoverexpressionofprdm14resultsinrapidonsetandhighlypenetranttcellacutelymphoblasticleukemiatall
_version_ 1725224185435783168