Multiplication semimodules

Let S be a semiring. An S-semimodule M is called a multiplication semimodule if for each subsemimodule N of M there exists an ideal I of S such that N = IM. In this paper we investigate some properties of multiplication semimodules and generalize some results on multiplication modules to semimodules...

Full description

Bibliographic Details
Main Authors: Nazari Rafieh Razavi, Ghalandarzadeh Shaban
Format: Article
Language:English
Published: Sciendo 2019-08-01
Series:Acta Universitatis Sapientiae: Mathematica
Subjects:
Online Access:https://doi.org/10.2478/ausm-2019-0014
id doaj-17c66449fc374950bec05907dcc81b82
record_format Article
spelling doaj-17c66449fc374950bec05907dcc81b822021-09-06T19:41:26ZengSciendoActa Universitatis Sapientiae: Mathematica2066-77522019-08-0111117218510.2478/ausm-2019-0014ausm-2019-0014Multiplication semimodulesNazari Rafieh Razavi0Ghalandarzadeh Shaban1Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, IranFaculty of Mathematics, K. N. Toosi University of Technology, Tehran, IranLet S be a semiring. An S-semimodule M is called a multiplication semimodule if for each subsemimodule N of M there exists an ideal I of S such that N = IM. In this paper we investigate some properties of multiplication semimodules and generalize some results on multiplication modules to semimodules. We show that every multiplicatively cancellative multiplication semimodule is finitely generated and projective. Moreover, we characterize finitely generated cancellative multiplication S-semimodules when S is a yoked semiring such that every maximal ideal of S is subtractive.https://doi.org/10.2478/ausm-2019-0014semiringmultiplication semimodule16y60
collection DOAJ
language English
format Article
sources DOAJ
author Nazari Rafieh Razavi
Ghalandarzadeh Shaban
spellingShingle Nazari Rafieh Razavi
Ghalandarzadeh Shaban
Multiplication semimodules
Acta Universitatis Sapientiae: Mathematica
semiring
multiplication semimodule
16y60
author_facet Nazari Rafieh Razavi
Ghalandarzadeh Shaban
author_sort Nazari Rafieh Razavi
title Multiplication semimodules
title_short Multiplication semimodules
title_full Multiplication semimodules
title_fullStr Multiplication semimodules
title_full_unstemmed Multiplication semimodules
title_sort multiplication semimodules
publisher Sciendo
series Acta Universitatis Sapientiae: Mathematica
issn 2066-7752
publishDate 2019-08-01
description Let S be a semiring. An S-semimodule M is called a multiplication semimodule if for each subsemimodule N of M there exists an ideal I of S such that N = IM. In this paper we investigate some properties of multiplication semimodules and generalize some results on multiplication modules to semimodules. We show that every multiplicatively cancellative multiplication semimodule is finitely generated and projective. Moreover, we characterize finitely generated cancellative multiplication S-semimodules when S is a yoked semiring such that every maximal ideal of S is subtractive.
topic semiring
multiplication semimodule
16y60
url https://doi.org/10.2478/ausm-2019-0014
work_keys_str_mv AT nazarirafiehrazavi multiplicationsemimodules
AT ghalandarzadehshaban multiplicationsemimodules
_version_ 1717766194615812096