Petrographic and isotopic evidence for late-stage processes in sulfuric acid caves of the Guadalupe Mountains, New Mexico, USA
Caves of the Guadalupe Mountains have experienced many modifications since their final phase of sulfuric acid speleogenesis several million years ago. Petrographic and geochemical data reveal details of the change from H2SO4 to CO2-dominated reactions. The H2SO4 dissolution front acquired a coating...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of South Florida Libraries
2012-07-01
|
Series: | International Journal of Speleology |
Subjects: | |
Online Access: | http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1088&context=ijs |
Summary: | Caves of the Guadalupe Mountains have experienced many modifications since their final phase of sulfuric acid speleogenesis several million years ago. Petrographic and geochemical data reveal details of the change from H2SO4 to CO2-dominated reactions. The H2SO4 dissolution front acquired a coating of replacement gypsum with local pockets of anhydrite and by-products of altered clay, including Fe-Mn oxides. Alteration of bedrock beneath the gypsum produced a white micritized rind with small negative shifts in δ13C and δ18O. Solution basins contain records of the earliest post-speleogenetic processes: corroded bedrock, residual anhydrite, Fe-Mn oxides from fluctuating pH and Eh, mammillary calcite, and dolomitization. Later meteoric water removed or recrystallized much of the gypsum and early micrite, and replaced some gypsum with calcite. Mammillary crusts demonstrate fluctuating groundwater, with calcite layers interrupted by films of Fe-Mn oxides precipitated during periodic inflow of anoxic water. Condensation moisture (from local evaporation) absorbs CO2 from cave air, corroding earlier features and lowering their δ13C and δ18O. Drips of condensation water deposit minerals mainly by evaporation, which increases δ18O in the speleothems while δ13C remains nearly constant. By forcing calcite precipitation, evaporation raises the Mg content of remaining water and subsequent precipitates. Dolomite (both primary and replacive) is abundant. In areas of low air circulation, water on and within carbonate speleothems equilibrates with cave-air CO2, causing minerals to recrystallize with glassy textures. Fluorite on young evaporative speleothems suggests a recent release of deep-source HF gas and absorption by droplets of condensation water. |
---|---|
ISSN: | 0392-6672 1827-806X |