Summary: | The existence of iron carbide in the upper mantle allows an assumption to be made about its possible involvement in the abyssal abiogenic synthesis of hydrocarbons as a carbon donor. Interacting with hydrogen donors of the mantle, iron carbide can form hydrocarbon fluid. In order to investigate the role of iron carbide in the abiogenic synthesis of hydrocarbons, the chemical reaction between cementite Fe<sub>3</sub>C and water was modeled under thermobaric conditions, corresponding to the upper mantle. A series of experiments were conducted using a high-pressure high-temperature Toroid-type large reactive volume unit with further analysis by means of gas chromatography. The results demonstrated the formation of hydrocarbon fluid in a wide range of thermobaric conditions (873–1223 K, 2.5–6.0 GPa) corresponding to the upper mantle. A strong correlation between the composition of the fluid and the pT conditions of the synthesis was illustrated in the investigation. The higher temperature of the synthesis resulted in the formation of a “poor” hydrocarbon mixture, primarily comprising methane, while a higher pressure yielded the opposite effect, converting iron carbide into a complex hydrocarbon system, containing normal and iso-alkanes up to C<sub>7</sub> and benzene. This correlation explains the diversity of hydrocarbon systems produced experimentally, thus expanding the thermobaric range of the possible existence of complex hydrocarbon systems in the upper mantle. The results support the suggestion that the carbide—water reaction can be a source of both the carbon and hydrogen required for the abyssal abiogenic synthesis of hydrocarbons.
|