Modeling Alcohol Concentration in Blood via a Fractional Context

We use a conformable fractional derivative <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> </mrow> <mi>&#945;</mi> </msubsup> </semantics> </math> </...

Full description

Bibliographic Details
Main Authors: Omar Rosario Cayetano, Alberto Fleitas Imbert, José Francisco Gómez-Aguilar, Antonio Fernando Sarmiento Galán
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/3/459
id doaj-179340bb108a42db90244bd6ab8e9112
record_format Article
spelling doaj-179340bb108a42db90244bd6ab8e91122020-11-25T00:44:43ZengMDPI AGSymmetry2073-89942020-03-0112345910.3390/sym12030459sym12030459Modeling Alcohol Concentration in Blood via a Fractional ContextOmar Rosario Cayetano0Alberto Fleitas Imbert1José Francisco Gómez-Aguilar2Antonio Fernando Sarmiento Galán3Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, Acalpulco Gro. 39650, MexicoDepartamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, SpainCONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira 62490 MexicoInstituto de Matemáticas, Universidad Nacional Autónoma de México, Ave. Universidad 2000, Chamilpa, Morelos 62200, MexicoWe use a conformable fractional derivative <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> </mrow> <mi>&#945;</mi> </msubsup> </semantics> </math> </inline-formula> through two kernels <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#945;</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>&#945;</mi> <mo>&#8722;</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#945;</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>&#8722;</mo> <mi>&#945;</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> in order to model the alcohol concentration in blood; we also work with the conformable Gaussian differential equation (CGDE) of this model, to evaluate how the curve associated with such a system adjusts to the data corresponding to the blood alcohol concentration. As a practical application, using the symmetry of the solution associated with the CGDE, we show the advantage of our conformable approaches with respect to the usual ordinary derivative.https://www.mdpi.com/2073-8994/12/3/459fractional calculusconformable and non-conformable derivativesbayesian estimation
collection DOAJ
language English
format Article
sources DOAJ
author Omar Rosario Cayetano
Alberto Fleitas Imbert
José Francisco Gómez-Aguilar
Antonio Fernando Sarmiento Galán
spellingShingle Omar Rosario Cayetano
Alberto Fleitas Imbert
José Francisco Gómez-Aguilar
Antonio Fernando Sarmiento Galán
Modeling Alcohol Concentration in Blood via a Fractional Context
Symmetry
fractional calculus
conformable and non-conformable derivatives
bayesian estimation
author_facet Omar Rosario Cayetano
Alberto Fleitas Imbert
José Francisco Gómez-Aguilar
Antonio Fernando Sarmiento Galán
author_sort Omar Rosario Cayetano
title Modeling Alcohol Concentration in Blood via a Fractional Context
title_short Modeling Alcohol Concentration in Blood via a Fractional Context
title_full Modeling Alcohol Concentration in Blood via a Fractional Context
title_fullStr Modeling Alcohol Concentration in Blood via a Fractional Context
title_full_unstemmed Modeling Alcohol Concentration in Blood via a Fractional Context
title_sort modeling alcohol concentration in blood via a fractional context
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-03-01
description We use a conformable fractional derivative <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> </mrow> <mi>&#945;</mi> </msubsup> </semantics> </math> </inline-formula> through two kernels <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#945;</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>&#945;</mi> <mo>&#8722;</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#945;</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>&#8722;</mo> <mi>&#945;</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> in order to model the alcohol concentration in blood; we also work with the conformable Gaussian differential equation (CGDE) of this model, to evaluate how the curve associated with such a system adjusts to the data corresponding to the blood alcohol concentration. As a practical application, using the symmetry of the solution associated with the CGDE, we show the advantage of our conformable approaches with respect to the usual ordinary derivative.
topic fractional calculus
conformable and non-conformable derivatives
bayesian estimation
url https://www.mdpi.com/2073-8994/12/3/459
work_keys_str_mv AT omarrosariocayetano modelingalcoholconcentrationinbloodviaafractionalcontext
AT albertofleitasimbert modelingalcoholconcentrationinbloodviaafractionalcontext
AT josefranciscogomezaguilar modelingalcoholconcentrationinbloodviaafractionalcontext
AT antoniofernandosarmientogalan modelingalcoholconcentrationinbloodviaafractionalcontext
_version_ 1725273845464563712