Modeling Alcohol Concentration in Blood via a Fractional Context
We use a conformable fractional derivative <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> </mrow> <mi>α</mi> </msubsup> </semantics> </math> </...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/3/459 |
id |
doaj-179340bb108a42db90244bd6ab8e9112 |
---|---|
record_format |
Article |
spelling |
doaj-179340bb108a42db90244bd6ab8e91122020-11-25T00:44:43ZengMDPI AGSymmetry2073-89942020-03-0112345910.3390/sym12030459sym12030459Modeling Alcohol Concentration in Blood via a Fractional ContextOmar Rosario Cayetano0Alberto Fleitas Imbert1José Francisco Gómez-Aguilar2Antonio Fernando Sarmiento Galán3Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, Acalpulco Gro. 39650, MexicoDepartamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, SpainCONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira 62490 MexicoInstituto de Matemáticas, Universidad Nacional Autónoma de México, Ave. Universidad 2000, Chamilpa, Morelos 62200, MexicoWe use a conformable fractional derivative <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> </mrow> <mi>α</mi> </msubsup> </semantics> </math> </inline-formula> through two kernels <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mi>α</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> in order to model the alcohol concentration in blood; we also work with the conformable Gaussian differential equation (CGDE) of this model, to evaluate how the curve associated with such a system adjusts to the data corresponding to the blood alcohol concentration. As a practical application, using the symmetry of the solution associated with the CGDE, we show the advantage of our conformable approaches with respect to the usual ordinary derivative.https://www.mdpi.com/2073-8994/12/3/459fractional calculusconformable and non-conformable derivativesbayesian estimation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Omar Rosario Cayetano Alberto Fleitas Imbert José Francisco Gómez-Aguilar Antonio Fernando Sarmiento Galán |
spellingShingle |
Omar Rosario Cayetano Alberto Fleitas Imbert José Francisco Gómez-Aguilar Antonio Fernando Sarmiento Galán Modeling Alcohol Concentration in Blood via a Fractional Context Symmetry fractional calculus conformable and non-conformable derivatives bayesian estimation |
author_facet |
Omar Rosario Cayetano Alberto Fleitas Imbert José Francisco Gómez-Aguilar Antonio Fernando Sarmiento Galán |
author_sort |
Omar Rosario Cayetano |
title |
Modeling Alcohol Concentration in Blood via a Fractional Context |
title_short |
Modeling Alcohol Concentration in Blood via a Fractional Context |
title_full |
Modeling Alcohol Concentration in Blood via a Fractional Context |
title_fullStr |
Modeling Alcohol Concentration in Blood via a Fractional Context |
title_full_unstemmed |
Modeling Alcohol Concentration in Blood via a Fractional Context |
title_sort |
modeling alcohol concentration in blood via a fractional context |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-03-01 |
description |
We use a conformable fractional derivative <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> </mrow> <mi>α</mi> </msubsup> </semantics> </math> </inline-formula> through two kernels <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>α</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mi>α</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> in order to model the alcohol concentration in blood; we also work with the conformable Gaussian differential equation (CGDE) of this model, to evaluate how the curve associated with such a system adjusts to the data corresponding to the blood alcohol concentration. As a practical application, using the symmetry of the solution associated with the CGDE, we show the advantage of our conformable approaches with respect to the usual ordinary derivative. |
topic |
fractional calculus conformable and non-conformable derivatives bayesian estimation |
url |
https://www.mdpi.com/2073-8994/12/3/459 |
work_keys_str_mv |
AT omarrosariocayetano modelingalcoholconcentrationinbloodviaafractionalcontext AT albertofleitasimbert modelingalcoholconcentrationinbloodviaafractionalcontext AT josefranciscogomezaguilar modelingalcoholconcentrationinbloodviaafractionalcontext AT antoniofernandosarmientogalan modelingalcoholconcentrationinbloodviaafractionalcontext |
_version_ |
1725273845464563712 |