Summary: | HyFlow is a grid-based multi-energy system (MES) modelling framework. It aims tomodel the status quo of current energy systems, future scenarios with a high share of fluctuatingenergy sources or additional consumers like electric vehicles, and to compare solution strategies ifcertain parts of the infrastructure are congested. In order to evaluate the congestion limits and thefeasibility and suitability of solution strategies (e.g., energy storage, sector coupling technologies,demand response (DR)), load flow calculations of all three main grid-bound energy carriers areimplemented in one single modelling framework. In addition to the implemented load flow models,it allows the interaction of these grids with the use of hybrid elements. This measure enables aproper assessment of future scenarios, not only for the infrastructure of one energy carrier, but forthe overall energy system. The calculation workflow of HyFlow, including the implemented loadflow calculations, as well as the implementation of the flexibility options, is described in detail inthe methodology section. To demonstrate the wide range of applicability of HyFlow with differentspatial ranges, two case studies referring to current research problems are presented: a city and aregion surrounding the mentioned city. The calculations for the mentioned case studies areperformed for three levels. A “status quo” level, a “high-stress” level with added fluctuatingenergy sources and consumers, and an “improvement” level, where flexibility options areintroduced to the system. The effect of the flexibility options on future energy grids is, therefore,analyzed and evaluated. A wide variety of evaluation criteria can be selected. For example, themaximum load of certain power lines, the self-sufficiency of the overall system, the total transportlosses or the total energy consumption.
|