EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM

In this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality.

Bibliographic Details
Main Authors: Eugenio Cabanillas Lapa, Raúl Moisés Izaguirre Maguiña, Juan Benito Bernui Barros, Zacarías Luis Huaringa Segura
Format: Article
Language:Spanish
Published: Universidad Nacional Mayor de San Marcos 2014-09-01
Series:Pesquimat
Subjects:
Online Access:http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9494
id doaj-178440d89f844fb5997e275b8b5feb1a
record_format Article
spelling doaj-178440d89f844fb5997e275b8b5feb1a2020-11-24T21:54:53ZspaUniversidad Nacional Mayor de San MarcosPesquimat1560-912X1609-84392014-09-0112210.15381/pes.v12i2.94948481EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERMEugenio Cabanillas Lapa0Raúl Moisés Izaguirre Maguiña1Juan Benito Bernui Barros2Zacarías Luis Huaringa Segura3Instituto de Investigación de la Facultad de Ciencias Matemáticas de la Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúIn this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality.http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9494Ecuación de KirchhoffTérmino fuenteEstabilización en la fronteraContinuación única.
collection DOAJ
language Spanish
format Article
sources DOAJ
author Eugenio Cabanillas Lapa
Raúl Moisés Izaguirre Maguiña
Juan Benito Bernui Barros
Zacarías Luis Huaringa Segura
spellingShingle Eugenio Cabanillas Lapa
Raúl Moisés Izaguirre Maguiña
Juan Benito Bernui Barros
Zacarías Luis Huaringa Segura
EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
Pesquimat
Ecuación de Kirchhoff
Término fuente
Estabilización en la frontera
Continuación única.
author_facet Eugenio Cabanillas Lapa
Raúl Moisés Izaguirre Maguiña
Juan Benito Bernui Barros
Zacarías Luis Huaringa Segura
author_sort Eugenio Cabanillas Lapa
title EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
title_short EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
title_full EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
title_fullStr EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
title_full_unstemmed EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
title_sort exponencial decay of wave equation with a weakly nonlinear boundary disipation and source term
publisher Universidad Nacional Mayor de San Marcos
series Pesquimat
issn 1560-912X
1609-8439
publishDate 2014-09-01
description In this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality.
topic Ecuación de Kirchhoff
Término fuente
Estabilización en la frontera
Continuación única.
url http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9494
work_keys_str_mv AT eugeniocabanillaslapa exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm
AT raulmoisesizaguirremaguina exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm
AT juanbenitobernuibarros exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm
AT zacariasluishuaringasegura exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm
_version_ 1725865090073231360