EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM
In this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality.
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Nacional Mayor de San Marcos
2014-09-01
|
Series: | Pesquimat |
Subjects: | |
Online Access: | http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9494 |
id |
doaj-178440d89f844fb5997e275b8b5feb1a |
---|---|
record_format |
Article |
spelling |
doaj-178440d89f844fb5997e275b8b5feb1a2020-11-24T21:54:53ZspaUniversidad Nacional Mayor de San MarcosPesquimat1560-912X1609-84392014-09-0112210.15381/pes.v12i2.94948481EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERMEugenio Cabanillas Lapa0Raúl Moisés Izaguirre Maguiña1Juan Benito Bernui Barros2Zacarías Luis Huaringa Segura3Instituto de Investigación de la Facultad de Ciencias Matemáticas de la Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúFacultad de Ciencias Matemáticas - Universidad Nacional Mayor de San Marcos – Lima - Lima – PerúIn this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality.http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9494Ecuación de KirchhoffTérmino fuenteEstabilización en la fronteraContinuación única. |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Eugenio Cabanillas Lapa Raúl Moisés Izaguirre Maguiña Juan Benito Bernui Barros Zacarías Luis Huaringa Segura |
spellingShingle |
Eugenio Cabanillas Lapa Raúl Moisés Izaguirre Maguiña Juan Benito Bernui Barros Zacarías Luis Huaringa Segura EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM Pesquimat Ecuación de Kirchhoff Término fuente Estabilización en la frontera Continuación única. |
author_facet |
Eugenio Cabanillas Lapa Raúl Moisés Izaguirre Maguiña Juan Benito Bernui Barros Zacarías Luis Huaringa Segura |
author_sort |
Eugenio Cabanillas Lapa |
title |
EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM |
title_short |
EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM |
title_full |
EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM |
title_fullStr |
EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM |
title_full_unstemmed |
EXPONENCIAL DECAY OF WAVE EQUATION WITH A WEAKLY NONLINEAR BOUNDARY DISIPATION AND SOURCE TERM |
title_sort |
exponencial decay of wave equation with a weakly nonlinear boundary disipation and source term |
publisher |
Universidad Nacional Mayor de San Marcos |
series |
Pesquimat |
issn |
1560-912X 1609-8439 |
publishDate |
2014-09-01 |
description |
In this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality. |
topic |
Ecuación de Kirchhoff Término fuente Estabilización en la frontera Continuación única. |
url |
http://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/9494 |
work_keys_str_mv |
AT eugeniocabanillaslapa exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm AT raulmoisesizaguirremaguina exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm AT juanbenitobernuibarros exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm AT zacariasluishuaringasegura exponencialdecayofwaveequationwithaweaklynonlinearboundarydisipationandsourceterm |
_version_ |
1725865090073231360 |