A Routing Strategy for Non-Cooperation Wireless Multi-Hop Ad Hoc Networks

Choosing routes such that the network lifetime is maximized in a wireless network with limited energy resources is a major routing problem in wireless multi-hop ad hoc networks. In this paper, we study the problem where participants are rationally selfish and non-cooperative. By selfish we designate...

Full description

Bibliographic Details
Main Authors: Dung T. Tran, Trang T. M. Truong, Thanh G. Le
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Mobile Information Systems
Online Access:http://dx.doi.org/10.3233/MIS-2012-00152
Description
Summary:Choosing routes such that the network lifetime is maximized in a wireless network with limited energy resources is a major routing problem in wireless multi-hop ad hoc networks. In this paper, we study the problem where participants are rationally selfish and non-cooperative. By selfish we designate the users who are ready to tamper with their source-routing (senders could choose intermediate nodes in the routing paths) or next hop selection strategies in order to increase the total number of packets transmitted, but do not try to harm or drop packets of the other nodes. The problem therefore amounts to a non-cooperative game. In the works [2,6,19,23], the authors show that the game admits Nash equilibria [1]. Along this line, we first show that if the cost function is linear, this game has pure-strategy equilibrium flow even though participants have different demands. However, finding a Nash equilibrium for a normal game is computationally hard [9]. In this work, inspired by mixed-strategy equilibrium, we propose a simple local routing algorithm called MIxed Path Routing protocol (MiPR). Using analysis and simulations, we show that MiPR drives the system to an equilibrium state where selfish participants do not have incentive to deviate. Moreover, MiPR significantly improves the network lifetime as compared to original routing protocols.
ISSN:1574-017X
1875-905X