Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel

The present work is about evaluating the emission characteristics of biodiesel-diesel blends in a reciprocating engine. The biodiesel was produced and characterized before the test. A virtual instrument was developed to evaluate the velocity, fuel consumption, temperature, and emissions of O<sub&...

Full description

Bibliographic Details
Main Authors: Armando Pérez, David Mateos, Conrado García, Camilo Caraveo, Gisela Montero, Marcos Coronado, Benjamín Valdez
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/14/3594
Description
Summary:The present work is about evaluating the emission characteristics of biodiesel-diesel blends in a reciprocating engine. The biodiesel was produced and characterized before the test. A virtual instrument was developed to evaluate the velocity, fuel consumption, temperature, and emissions of O<sub>2</sub>, CO, SO<sub>2</sub>, and NO from an ignition-compression engine of four cylinders with a constant rate of 850 rpm. The percentages of soybean-biodiesel (B) blended with Mexican-diesel (D) analyzed were 2% B-98% D (B2), 5% B-95% B (B5), and 20% B-80% D (B20). The biodiesel was obtained through a transesterification process and was characterized using Fourier-Transform Infrared spectroscopy and Raman spectroscopy. Our results indicate that CO emission is 6%, 10%, and 18% lower for B2, B5, and B20, respectively, in comparison with 100% (D100). The O<sub>2</sub> emission is 12% greater in B20 than D100. A reduction of 3% NO and 2.6% SO<sub>2</sub> was found in comparison to D100. The obtained results show 44.9 kJ/g of diesel’s lower heating value, this result which is 13% less than the biodiesel value, 2.8% less than B20, 1.3% than B5, and practically the same as B2. The specific viscosity stands out with 0.024 Poise for the B100 at 73 °C, which is 63% greater than D100. The infrared spectra show characteristics signals of esters groups (C-O) and the pronounced peak from the carbonyl group (C=O). It is observed that the increase in absorbance of the carbonyl group corresponds to an increase in biodiesel concentration.
ISSN:1996-1073