Representation of Friedmann equation solution in form of generalized Dirichlet series

The cosmological Friedmann equation for the Universe, filled by scalar field with the quadratic potential, is reduced to the system of two first-order equations, one having the separable variables. The boundary-value problem with data at infinity is formulated for the second equation. The solution o...

Full description

Bibliographic Details
Main Author: È. A. Kuryanovich
Format: Article
Language:English
Published: Samara State Technical University 2013-06-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Online Access:http://mi.mathnet.ru/eng/vsgtu1240
Description
Summary:The cosmological Friedmann equation for the Universe, filled by scalar field with the quadratic potential, is reduced to the system of two first-order equations, one having the separable variables. The boundary-value problem with data at infinity is formulated for the second equation. The solution of this problem is represented in form of generalized Dirichlet series. The existence of classical solution in this form at the neighborhood of infinity is proved.
ISSN:1991-8615
2310-7081