PCA-Based Robust Motion Data Recovery

Human motion tracking is a prevalent technique in many fields. A common difficulty encountered in motion tracking is the corrupted data is caused by detachment of markers in 3D motion data or occlusion in 2D tracking data. Most methods for missing markers problem may quickly become ineffective when...

Full description

Bibliographic Details
Main Authors: Zhuorong Li, Hongchuan Yu, Hai Dang Kieu, Tung Long Vuong, Jian Jun Zhang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9076621/
Description
Summary:Human motion tracking is a prevalent technique in many fields. A common difficulty encountered in motion tracking is the corrupted data is caused by detachment of markers in 3D motion data or occlusion in 2D tracking data. Most methods for missing markers problem may quickly become ineffective when gaps exist in the trajectories of multiple markers for an extended duration. In this paper, we propose the principal component eigenspace based gap filling methods that leverage a training sample set for estimation. The proposed method is especially beneficial in the scenario of motion data with less predictable or repeated movement patterns, and that of even missing entire frames within an interval of a sequence. To highlight algorithm robustness, we perform algorithms on twenty test samples for comparison. The experimental results show that our methods are numerical stable and fast to work.
ISSN:2169-3536