On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications

In this paper, we establish <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></s...

Full description

Bibliographic Details
Main Authors: Sansumpan Jirakulchaiwong, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hwajoon Kim
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/4/631
id doaj-173c715c4d6045beb66426e9206696c7
record_format Article
spelling doaj-173c715c4d6045beb66426e9206696c72021-04-09T23:06:13ZengMDPI AGSymmetry2073-89942021-04-011363163110.3390/sym13040631On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and ApplicationsSansumpan Jirakulchaiwong0Kamsing Nonlaopon1Jessada Tariboon2Sotiris K. Ntouyas3Hwajoon Kim4Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandDepartment of Mathematics, University Ioannina, 451 10 Ioannina, GreeceDepartment of IT Engineering, Kyungdong University, Yangju Gyeonggi 11458, KoreaIn this paper, we establish <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogues of Laplace-type integral transforms by using the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-calculus. Moreover, we study some properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogues of Laplace-type integral transforms and apply them to solve some (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>)-differential equations.https://www.mdpi.com/2073-8994/13/4/631(<i>p,q</i>)-laplace-typed integral transforms(<i>p,q</i>)-derivative(<i>p,q</i>)-integral(<i>p,q</i>)-calculus(<i>p,q</i>)-difference equations(<i>p,q</i>)-convolution theorem
collection DOAJ
language English
format Article
sources DOAJ
author Sansumpan Jirakulchaiwong
Kamsing Nonlaopon
Jessada Tariboon
Sotiris K. Ntouyas
Hwajoon Kim
spellingShingle Sansumpan Jirakulchaiwong
Kamsing Nonlaopon
Jessada Tariboon
Sotiris K. Ntouyas
Hwajoon Kim
On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications
Symmetry
(<i>p,q</i>)-laplace-typed integral transforms
(<i>p,q</i>)-derivative
(<i>p,q</i>)-integral
(<i>p,q</i>)-calculus
(<i>p,q</i>)-difference equations
(<i>p,q</i>)-convolution theorem
author_facet Sansumpan Jirakulchaiwong
Kamsing Nonlaopon
Jessada Tariboon
Sotiris K. Ntouyas
Hwajoon Kim
author_sort Sansumpan Jirakulchaiwong
title On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications
title_short On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications
title_full On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications
title_fullStr On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications
title_full_unstemmed On (<i>p</i>,<i>q</i>)-Analogues of Laplace-Typed Integral Transforms and Applications
title_sort on (<i>p</i>,<i>q</i>)-analogues of laplace-typed integral transforms and applications
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-04-01
description In this paper, we establish <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogues of Laplace-type integral transforms by using the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-calculus. Moreover, we study some properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogues of Laplace-type integral transforms and apply them to solve some (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>)-differential equations.
topic (<i>p,q</i>)-laplace-typed integral transforms
(<i>p,q</i>)-derivative
(<i>p,q</i>)-integral
(<i>p,q</i>)-calculus
(<i>p,q</i>)-difference equations
(<i>p,q</i>)-convolution theorem
url https://www.mdpi.com/2073-8994/13/4/631
work_keys_str_mv AT sansumpanjirakulchaiwong onipiiqianaloguesoflaplacetypedintegraltransformsandapplications
AT kamsingnonlaopon onipiiqianaloguesoflaplacetypedintegraltransformsandapplications
AT jessadatariboon onipiiqianaloguesoflaplacetypedintegraltransformsandapplications
AT sotiriskntouyas onipiiqianaloguesoflaplacetypedintegraltransformsandapplications
AT hwajoonkim onipiiqianaloguesoflaplacetypedintegraltransformsandapplications
_version_ 1721532024307580928