Some estimates of special classes of integrals
We study the integrals fb a f(t) exp(i| ln rt|σ) dt and obtain asymptotic formula for these functions of non‐regular growth. This is a peculiar kind of the theory asymptotic expansions. In particular, we get asymptotic formulae for different entire functions of non‐regular growth. Asymptotic formul...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2000-12-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9951 |
id |
doaj-171ab9d1525243d3bd5fba6396877dd6 |
---|---|
record_format |
Article |
spelling |
doaj-171ab9d1525243d3bd5fba6396877dd62021-07-02T13:54:50ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102000-12-015110.3846/13926292.2000.9637135Some estimates of special classes of integralsT. I. Malyutina0Ukrainian Academy of Banking , PetroPavlovska Str. 56, Sumy, 244030, Ukraine We study the integrals fb a f(t) exp(i| ln rt|σ) dt and obtain asymptotic formula for these functions of non‐regular growth. This is a peculiar kind of the theory asymptotic expansions. In particular, we get asymptotic formulae for different entire functions of non‐regular growth. Asymptotic formulas for Levin‐Pfluger entire functions of completely regular growth are well‐known [1]. Our formulas allow to find limiting Azarin's [2] sets for some subharmonic functions. The kernel exp(i| ln rt|σ) contains arbitrary parameter σ > 0. The integrals for σ ∈(0, 1), σ = 1, σ > 1 essentially differ. Our arguments can apply to more general kernels. We give a new variant of the classic lemma of Riemann and Lebesgue from the theory of the transformation of Fourier. Specialiųjų integralų klasių įverčiai Santrauka Darbe nagrinejami integralai fb a f(t) exp(i| ln r|σ) dt ir tiriamos šiu nereguliaraus augimo greičiu funkciju asimptotines formules. Gautos naujos asimptotines formules, leidžiančios rasti Azarino aibes kai kurioms subharmoninems funkcijoms. Branduolys exp(i| ln rt|σ) priklauso nuo vieno parametro σ > 0. Trys atvejai, kai 0 < σ < 1, σ = 1 ir σ > 0, yra esminiai skirtingi. Darbo metodika gali būti naudojama ir bendresniems branduoliu atvejams. Irodytas naujas Rimano ir Lebego lemos varijantas, kuris naudojamas Furje transformacijos teorijoje. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9951- |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
T. I. Malyutina |
spellingShingle |
T. I. Malyutina Some estimates of special classes of integrals Mathematical Modelling and Analysis - |
author_facet |
T. I. Malyutina |
author_sort |
T. I. Malyutina |
title |
Some estimates of special classes of integrals |
title_short |
Some estimates of special classes of integrals |
title_full |
Some estimates of special classes of integrals |
title_fullStr |
Some estimates of special classes of integrals |
title_full_unstemmed |
Some estimates of special classes of integrals |
title_sort |
some estimates of special classes of integrals |
publisher |
Vilnius Gediminas Technical University |
series |
Mathematical Modelling and Analysis |
issn |
1392-6292 1648-3510 |
publishDate |
2000-12-01 |
description |
We study the integrals fb a f(t) exp(i| ln rt|σ) dt and obtain asymptotic formula for these functions of non‐regular growth. This is a peculiar kind of the theory asymptotic expansions. In particular, we get asymptotic formulae for different entire functions of non‐regular growth. Asymptotic formulas for Levin‐Pfluger entire functions of completely regular growth are well‐known [1]. Our formulas allow to find limiting Azarin's [2] sets for some subharmonic functions. The kernel exp(i| ln rt|σ) contains arbitrary parameter σ > 0. The integrals for σ ∈(0, 1), σ = 1, σ > 1 essentially differ. Our arguments can apply to more general kernels. We give a new variant of the classic lemma of Riemann and Lebesgue from the theory of the transformation of Fourier.
Specialiųjų integralų klasių įverčiai
Santrauka
Darbe nagrinejami integralai fb a f(t) exp(i| ln r|σ) dt ir tiriamos šiu nereguliaraus augimo greičiu funkciju asimptotines formules. Gautos naujos asimptotines formules, leidžiančios rasti Azarino aibes kai kurioms subharmoninems funkcijoms. Branduolys exp(i| ln rt|σ) priklauso nuo vieno parametro σ > 0. Trys atvejai, kai 0 < σ < 1, σ = 1 ir σ > 0, yra esminiai skirtingi. Darbo metodika gali būti naudojama ir bendresniems branduoliu atvejams. Irodytas naujas Rimano ir Lebego lemos varijantas, kuris naudojamas Furje transformacijos teorijoje.
First Published Online: 14 Oct 2010
|
topic |
- |
url |
https://journals.vgtu.lt/index.php/MMA/article/view/9951 |
work_keys_str_mv |
AT timalyutina someestimatesofspecialclassesofintegrals |
_version_ |
1721328490488266752 |