Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System
Bearing is a key part of rotary machines, and its working condition is critical in normal operation of rotary machines. Vibrational signals are usually analyzed to monitor the status of bearing. However, information on the status of bearing is always buried in heavy background noise; that is, status...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2017/5716296 |
id |
doaj-1719399ed282475facb517f0199ff3fa |
---|---|
record_format |
Article |
spelling |
doaj-1719399ed282475facb517f0199ff3fa2020-11-25T01:06:33ZengHindawi LimitedShock and Vibration1070-96221875-92032017-01-01201710.1155/2017/57162965716296Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear SystemYongbin Liu0Zhijia Dai1Siliang Lu2Fang Liu3Jiwen Zhao4Jiale Shen5College of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, ChinaCollege of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, ChinaCollege of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, ChinaCollege of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, ChinaCollege of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, ChinaCollege of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, ChinaBearing is a key part of rotary machines, and its working condition is critical in normal operation of rotary machines. Vibrational signals are usually analyzed to monitor the status of bearing. However, information on the status of bearing is always buried in heavy background noise; that is, status information of bearing is weaker than the background noise. Extracting the status features of bearing from signals buried in noise is difficult. Given this, a step-varying vibrational resonance (SVVR) method based on Duffing oscillator nonlinear system is proposed to enhance the weak status feature of bearing by tuning different parameters. Extraction ability of SVVR was verified by analyzing simulation signal and practical bearing signal. Experimental results show that SVVR is more effective in extracting weak characteristic information than other methods, including multiscale noise tuning stochastic resonance (SR), Woods–Saxon potential-based SR, and joint Woods–Saxon and Gaussian potential-based SR. Two evaluation indices are investigated to qualitatively and quantitatively assess the fault detection capability of the SVVR method. The results show that the SVVR can effectively identify the weak status information of bearing.http://dx.doi.org/10.1155/2017/5716296 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yongbin Liu Zhijia Dai Siliang Lu Fang Liu Jiwen Zhao Jiale Shen |
spellingShingle |
Yongbin Liu Zhijia Dai Siliang Lu Fang Liu Jiwen Zhao Jiale Shen Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System Shock and Vibration |
author_facet |
Yongbin Liu Zhijia Dai Siliang Lu Fang Liu Jiwen Zhao Jiale Shen |
author_sort |
Yongbin Liu |
title |
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System |
title_short |
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System |
title_full |
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System |
title_fullStr |
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System |
title_full_unstemmed |
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System |
title_sort |
enhanced bearing fault detection using step-varying vibrational resonance based on duffing oscillator nonlinear system |
publisher |
Hindawi Limited |
series |
Shock and Vibration |
issn |
1070-9622 1875-9203 |
publishDate |
2017-01-01 |
description |
Bearing is a key part of rotary machines, and its working condition is critical in normal operation of rotary machines. Vibrational signals are usually analyzed to monitor the status of bearing. However, information on the status of bearing is always buried in heavy background noise; that is, status information of bearing is weaker than the background noise. Extracting the status features of bearing from signals buried in noise is difficult. Given this, a step-varying vibrational resonance (SVVR) method based on Duffing oscillator nonlinear system is proposed to enhance the weak status feature of bearing by tuning different parameters. Extraction ability of SVVR was verified by analyzing simulation signal and practical bearing signal. Experimental results show that SVVR is more effective in extracting weak characteristic information than other methods, including multiscale noise tuning stochastic resonance (SR), Woods–Saxon potential-based SR, and joint Woods–Saxon and Gaussian potential-based SR. Two evaluation indices are investigated to qualitatively and quantitatively assess the fault detection capability of the SVVR method. The results show that the SVVR can effectively identify the weak status information of bearing. |
url |
http://dx.doi.org/10.1155/2017/5716296 |
work_keys_str_mv |
AT yongbinliu enhancedbearingfaultdetectionusingstepvaryingvibrationalresonancebasedonduffingoscillatornonlinearsystem AT zhijiadai enhancedbearingfaultdetectionusingstepvaryingvibrationalresonancebasedonduffingoscillatornonlinearsystem AT silianglu enhancedbearingfaultdetectionusingstepvaryingvibrationalresonancebasedonduffingoscillatornonlinearsystem AT fangliu enhancedbearingfaultdetectionusingstepvaryingvibrationalresonancebasedonduffingoscillatornonlinearsystem AT jiwenzhao enhancedbearingfaultdetectionusingstepvaryingvibrationalresonancebasedonduffingoscillatornonlinearsystem AT jialeshen enhancedbearingfaultdetectionusingstepvaryingvibrationalresonancebasedonduffingoscillatornonlinearsystem |
_version_ |
1725189564244426752 |