Analytical versus numerical calculations of physical problems. The benefits of its combination
The disadvantage of the pure application of numerical approaches, however, is the fact, that the physicals laws behind are not so easy to visualize, the results art not so easy to generalize, and the storage of the information requires mostly an extensive amount of data. This paper would like to...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2003-12-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9785 |
id |
doaj-1718968e7ec14b9e8743ea69407d2969 |
---|---|
record_format |
Article |
spelling |
doaj-1718968e7ec14b9e8743ea69407d29692021-07-02T06:05:36ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-12-018410.3846/13926292.2003.9637231Analytical versus numerical calculations of physical problems. The benefits of its combinationH. D. Liess0A. Ilgevičius1University of the Federal Armed Forces in Munich , Werner‐Heisenberg‐ Weg 39, Neubiberg, 85579, GermanyUniversity of the Federal Armed Forces in Munich , Werner‐Heisenberg‐ Weg 39, Neubiberg, 85579, Germany The disadvantage of the pure application of numerical approaches, however, is the fact, that the physicals laws behind are not so easy to visualize, the results art not so easy to generalize, and the storage of the information requires mostly an extensive amount of data. This paper would like to show at some examples the advantages of the combination of both methods. The key part of this approach is the calculation of the heat transfer by the Finite Volume Method (FVM) and the approximation of the calculated data by the so‐called “simplified equations”. These simplified equations were received by analytical solutions of the basic heat conduction equation. The required adaptation of the numerical results was done with properly adapted fitting algorithms on the basis of the elaborated analytical solutions, a process which was leading to an enormous reduction of data. As a result it became possible to describe the applied tasks by a few characteristic constants. Another approach for an analytical solution with a numerical calculation process is the determination of the so‐called “properties of mixed magnitudes”. As an example this principle has been applied for the numerical calculation of electrical multi conductor containing cables. This process allowed the prediction of the thermal behavior of any cable harness with the required precision. Kai kurių fizikos uždavinių sprendimas analitiniais-skaitiniai metodais bei šių metodų derinio pranašumai Santrauka Darbe nagrinejamas analitinis metodas, temperatūros pasiskirstymo elektros laiduose bei ju pluoštuose uždaviniams spresti. Analitinis metodas yra pritaikytas šilumos laidumo koeficientams paskaičiuoti daugiasluoksneje medžiagoje – elektros laidu pluošte.Temperatūros pasiskirstymui atskirame elektros laidininke paskaičiuoti yra pritaikytas baigtiniu tūriu metodas. Turint tikslias atskiro laidininko temperatūros vertes, toliau laidu pluošto temperatūru vertes galima skaičiuoti analitiškai, ivedus proporcingumo koeficientus šilumos laidumo dydžiui rasti. Tokia procedūra duoda galimybe gauti efektyvu algoritma, skirta spresti šilumos pernešimo uždavinius atskiruose laiduose tiek ju pluoštuose su skirtingais skerspjūviais. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9785mathematical modelingheat transferelectrical cables |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
H. D. Liess A. Ilgevičius |
spellingShingle |
H. D. Liess A. Ilgevičius Analytical versus numerical calculations of physical problems. The benefits of its combination Mathematical Modelling and Analysis mathematical modeling heat transfer electrical cables |
author_facet |
H. D. Liess A. Ilgevičius |
author_sort |
H. D. Liess |
title |
Analytical versus numerical calculations of physical problems. The benefits of its combination |
title_short |
Analytical versus numerical calculations of physical problems. The benefits of its combination |
title_full |
Analytical versus numerical calculations of physical problems. The benefits of its combination |
title_fullStr |
Analytical versus numerical calculations of physical problems. The benefits of its combination |
title_full_unstemmed |
Analytical versus numerical calculations of physical problems. The benefits of its combination |
title_sort |
analytical versus numerical calculations of physical problems. the benefits of its combination |
publisher |
Vilnius Gediminas Technical University |
series |
Mathematical Modelling and Analysis |
issn |
1392-6292 1648-3510 |
publishDate |
2003-12-01 |
description |
The disadvantage of the pure application of numerical approaches, however, is the fact, that the physicals laws behind are not so easy to visualize, the results art not so easy to generalize, and the storage of the information requires mostly an extensive amount of data. This paper would like to show at some examples the advantages of the combination of both methods. The key part of this approach is the calculation of the heat transfer by the Finite Volume Method (FVM) and the approximation of the calculated data by the so‐called “simplified equations”. These simplified equations were received by analytical solutions of the basic heat conduction equation. The required adaptation of the numerical results was done with properly adapted fitting algorithms on the basis of the elaborated analytical solutions, a process which was leading to an enormous reduction of data. As a result it became possible to describe the applied tasks by a few characteristic constants.
Another approach for an analytical solution with a numerical calculation process is the determination of the so‐called “properties of mixed magnitudes”. As an example this principle has been applied for the numerical calculation of electrical multi conductor containing cables. This process allowed the prediction of the thermal behavior of any cable harness with the required precision.
Kai kurių fizikos uždavinių sprendimas analitiniais-skaitiniai metodais bei šių metodų derinio pranašumai
Santrauka
Darbe nagrinejamas analitinis metodas, temperatūros pasiskirstymo elektros laiduose bei ju pluoštuose uždaviniams spresti. Analitinis metodas yra pritaikytas šilumos laidumo koeficientams paskaičiuoti daugiasluoksneje medžiagoje – elektros laidu pluošte.Temperatūros pasiskirstymui atskirame elektros laidininke paskaičiuoti yra pritaikytas baigtiniu tūriu metodas. Turint tikslias atskiro laidininko temperatūros vertes, toliau laidu pluošto temperatūru vertes galima skaičiuoti analitiškai, ivedus proporcingumo koeficientus šilumos laidumo dydžiui rasti. Tokia procedūra duoda galimybe gauti efektyvu algoritma, skirta spresti šilumos pernešimo uždavinius atskiruose laiduose tiek ju pluoštuose su skirtingais skerspjūviais.
First Published Online: 14 Oct 2010
|
topic |
mathematical modeling heat transfer electrical cables |
url |
https://journals.vgtu.lt/index.php/MMA/article/view/9785 |
work_keys_str_mv |
AT hdliess analyticalversusnumericalcalculationsofphysicalproblemsthebenefitsofitscombination AT ailgevicius analyticalversusnumericalcalculationsofphysicalproblemsthebenefitsofitscombination |
_version_ |
1721337782850289664 |