Analytical versus numerical calculations of physical problems. The benefits of its combination

The disadvantage of the pure application of numerical approaches, however, is the fact, that the physicals laws behind are not so easy to visualize, the results art not so easy to generalize, and the storage of the information requires mostly an extensive amount of data. This paper would like to...

Full description

Bibliographic Details
Main Authors: H. D. Liess, A. Ilgevičius
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2003-12-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9785
id doaj-1718968e7ec14b9e8743ea69407d2969
record_format Article
spelling doaj-1718968e7ec14b9e8743ea69407d29692021-07-02T06:05:36ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-12-018410.3846/13926292.2003.9637231Analytical versus numerical calculations of physical problems. The benefits of its combinationH. D. Liess0A. Ilgevičius1University of the Federal Armed Forces in Munich , Werner‐Heisenberg‐ Weg 39, Neubiberg, 85579, GermanyUniversity of the Federal Armed Forces in Munich , Werner‐Heisenberg‐ Weg 39, Neubiberg, 85579, Germany The disadvantage of the pure application of numerical approaches, however, is the fact, that the physicals laws behind are not so easy to visualize, the results art not so easy to generalize, and the storage of the information requires mostly an extensive amount of data. This paper would like to show at some examples the advantages of the combination of both methods. The key part of this approach is the calculation of the heat transfer by the Finite Volume Method (FVM) and the approximation of the calculated data by the so‐called “simplified equations”. These simplified equations were received by analytical solutions of the basic heat conduction equation. The required adaptation of the numerical results was done with properly adapted fitting algorithms on the basis of the elaborated analytical solutions, a process which was leading to an enormous reduction of data. As a result it became possible to describe the applied tasks by a few characteristic constants. Another approach for an analytical solution with a numerical calculation process is the determination of the so‐called “properties of mixed magnitudes”. As an example this principle has been applied for the numerical calculation of electrical multi conductor containing cables. This process allowed the prediction of the thermal behavior of any cable harness with the required precision. Kai kurių fizikos uždavinių sprendimas analitiniais-skaitiniai metodais bei šių metodų derinio pranašumai Santrauka Darbe nagrinejamas analitinis metodas, temperatūros pasiskirstymo elektros laiduose bei ju pluoštuose uždaviniams spresti. Analitinis metodas yra pritaikytas šilumos laidumo koeficientams paskaičiuoti daugiasluoksneje medžiagoje – elektros laidu pluošte.Temperatūros pasiskirstymui atskirame elektros laidininke paskaičiuoti yra pritaikytas baigtiniu tūriu metodas. Turint tikslias atskiro laidininko temperatūros vertes, toliau laidu pluošto temperatūru vertes galima skaičiuoti analitiškai, ivedus proporcingumo koeficientus šilumos laidumo dydžiui rasti. Tokia procedūra duoda galimybe gauti efektyvu algoritma, skirta spresti šilumos pernešimo uždavinius atskiruose laiduose tiek ju pluoštuose su skirtingais skerspjūviais. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9785mathematical modelingheat transferelectrical cables
collection DOAJ
language English
format Article
sources DOAJ
author H. D. Liess
A. Ilgevičius
spellingShingle H. D. Liess
A. Ilgevičius
Analytical versus numerical calculations of physical problems. The benefits of its combination
Mathematical Modelling and Analysis
mathematical modeling
heat transfer
electrical cables
author_facet H. D. Liess
A. Ilgevičius
author_sort H. D. Liess
title Analytical versus numerical calculations of physical problems. The benefits of its combination
title_short Analytical versus numerical calculations of physical problems. The benefits of its combination
title_full Analytical versus numerical calculations of physical problems. The benefits of its combination
title_fullStr Analytical versus numerical calculations of physical problems. The benefits of its combination
title_full_unstemmed Analytical versus numerical calculations of physical problems. The benefits of its combination
title_sort analytical versus numerical calculations of physical problems. the benefits of its combination
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2003-12-01
description The disadvantage of the pure application of numerical approaches, however, is the fact, that the physicals laws behind are not so easy to visualize, the results art not so easy to generalize, and the storage of the information requires mostly an extensive amount of data. This paper would like to show at some examples the advantages of the combination of both methods. The key part of this approach is the calculation of the heat transfer by the Finite Volume Method (FVM) and the approximation of the calculated data by the so‐called “simplified equations”. These simplified equations were received by analytical solutions of the basic heat conduction equation. The required adaptation of the numerical results was done with properly adapted fitting algorithms on the basis of the elaborated analytical solutions, a process which was leading to an enormous reduction of data. As a result it became possible to describe the applied tasks by a few characteristic constants. Another approach for an analytical solution with a numerical calculation process is the determination of the so‐called “properties of mixed magnitudes”. As an example this principle has been applied for the numerical calculation of electrical multi conductor containing cables. This process allowed the prediction of the thermal behavior of any cable harness with the required precision. Kai kurių fizikos uždavinių sprendimas analitiniais-skaitiniai metodais bei šių metodų derinio pranašumai Santrauka Darbe nagrinejamas analitinis metodas, temperatūros pasiskirstymo elektros laiduose bei ju pluoštuose uždaviniams spresti. Analitinis metodas yra pritaikytas šilumos laidumo koeficientams paskaičiuoti daugiasluoksneje medžiagoje – elektros laidu pluošte.Temperatūros pasiskirstymui atskirame elektros laidininke paskaičiuoti yra pritaikytas baigtiniu tūriu metodas. Turint tikslias atskiro laidininko temperatūros vertes, toliau laidu pluošto temperatūru vertes galima skaičiuoti analitiškai, ivedus proporcingumo koeficientus šilumos laidumo dydžiui rasti. Tokia procedūra duoda galimybe gauti efektyvu algoritma, skirta spresti šilumos pernešimo uždavinius atskiruose laiduose tiek ju pluoštuose su skirtingais skerspjūviais. First Published Online: 14 Oct 2010
topic mathematical modeling
heat transfer
electrical cables
url https://journals.vgtu.lt/index.php/MMA/article/view/9785
work_keys_str_mv AT hdliess analyticalversusnumericalcalculationsofphysicalproblemsthebenefitsofitscombination
AT ailgevicius analyticalversusnumericalcalculationsofphysicalproblemsthebenefitsofitscombination
_version_ 1721337782850289664