Neuronal cell fate diversification controlled by sub-temporal action of Kruppel

During Drosophila embryonic nervous system development, neuroblasts express a programmed cascade of five temporal transcription factors that govern the identity of cells generated at different time-points. However, these five temporal genes fall short of accounting for the many distinct cell types g...

Full description

Bibliographic Details
Main Authors: Johannes Stratmann, Hugo Gabilondo, Jonathan Benito-Sipos, Stefan Thor
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2016-10-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/19311
Description
Summary:During Drosophila embryonic nervous system development, neuroblasts express a programmed cascade of five temporal transcription factors that govern the identity of cells generated at different time-points. However, these five temporal genes fall short of accounting for the many distinct cell types generated in large lineages. Here, we find that the late temporal gene castor sub-divides its large window in neuroblast 5–6 by simultaneously activating two cell fate determination cascades and a sub-temporal regulatory program. The sub-temporal program acts both upon itself and upon the determination cascades to diversify the castor window. Surprisingly, the early temporal gene Kruppel acts as one of the sub-temporal genes within the late castor window. Intriguingly, while the temporal gene castor activates the two determination cascades and the sub-temporal program, spatial cues controlling cell fate in the latter part of the 5–6 lineage exclusively act upon the determination cascades.
ISSN:2050-084X