Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics

Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with the detector is both time consuming and computationally expensive. With its proton-proton collision energy of 13 TeV, the Large Hadron Collider is unique...

Full description

Bibliographic Details
Main Authors: Hariri Ali, Dyachkova Darya, Gleyzer Sergei
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03051.pdf
Description
Summary:Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with the detector is both time consuming and computationally expensive. With its proton-proton collision energy of 13 TeV, the Large Hadron Collider is uniquely positioned to detect and measure the rare phenomena that can shape our knowledge of new interactions. The High-Luminosity Large Hadron Collider (HLLHC) upgrade will put a significant strain on the computing infrastructure and budget due to increased event rate and levels of pile-up. Simulation of highenergy physics collisions needs to be significantly faster without sacrificing the physics accuracy. Machine learning approaches can offer faster solutions, while maintaining a high level of fidelity. We introduce a graph generative model that provides effiective reconstruction of LHC events on the level of calorimeter deposits and tracks, paving the way for full detector level fast simulation.
ISSN:2100-014X