Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics
Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with the detector is both time consuming and computationally expensive. With its proton-proton collision energy of 13 TeV, the Large Hadron Collider is unique...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03051.pdf |
Summary: | Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with the detector is both time consuming and computationally expensive. With its proton-proton collision energy of 13 TeV, the Large Hadron Collider is uniquely positioned to detect and measure the rare phenomena that can shape our knowledge of new interactions. The High-Luminosity Large Hadron Collider (HLLHC) upgrade will put a significant strain on the computing infrastructure and budget due to increased event rate and levels of pile-up. Simulation of highenergy physics collisions needs to be significantly faster without sacrificing the physics accuracy. Machine learning approaches can offer faster solutions, while maintaining a high level of fidelity. We introduce a graph generative model that provides effiective reconstruction of LHC events on the level of calorimeter deposits and tracks, paving the way for full detector level fast simulation. |
---|---|
ISSN: | 2100-014X |