Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer

In the process of airborne gravity gradiometry for the full-tensor airborne gravity gradiometer (FTAGG), the attitude of the carrier and the fuel mass will seriously affect the accuracy of gravity gradiometry. A self-gradient is the gravity gradient produced by the surrounding masses, and the surrou...

Full description

Bibliographic Details
Main Authors: Xuewu Qian, Yanhua Zhu
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/8/1950
id doaj-16cfd36874ae4eb3a2d6b07d14391a48
record_format Article
spelling doaj-16cfd36874ae4eb3a2d6b07d14391a482020-11-25T01:36:37ZengMDPI AGSensors1424-82202019-04-01198195010.3390/s19081950s19081950Self-Gradient Compensation of Full-Tensor Airborne Gravity GradiometerXuewu Qian0Yanhua Zhu1School of Automation and Electrical Engineering, LinYi University, Linyi 276000, ChinaSchool of Instrument Science and Engineering, Southeast University, Nanjing 210096, ChinaIn the process of airborne gravity gradiometry for the full-tensor airborne gravity gradiometer (FTAGG), the attitude of the carrier and the fuel mass will seriously affect the accuracy of gravity gradiometry. A self-gradient is the gravity gradient produced by the surrounding masses, and the surrounding masses include distribution mass for the carrier mass and fuel mass. In this paper, in order to improve the accuracy of airborne gravity gradiometry, a self-gradient compensation model is proposed for FTAGG. The self-gradient compensation model is a fuction of attitude for carrier and time, and it includes parameters ralated to the distribution mass for the carrier. The influence of carrier attitude and fuel mass on the self-gradient are simulated and analyzed. Simulation shows that the self-gradient tensor element <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </semantics> </math> </inline-formula> are greatly affected by the middle part of the carrier, and the self-gradient tensor element <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </semantics> </math> </inline-formula> is affected by the carrier&#8217;s fuel mass in three attitudes. Further simulation experiments show that the presented self-gradient compensation method is valid, and the error of the self-gradient compensation is within 0.1 Eu. Furthermore, this method can provide an important reference for improving the accuracy of aviation gravity gradiometry.https://www.mdpi.com/1424-8220/19/8/1950self-gradient compensationfull-tensor airborne gravity gradiometergravity gradiometryrotating accelerometer gravity gradiometer
collection DOAJ
language English
format Article
sources DOAJ
author Xuewu Qian
Yanhua Zhu
spellingShingle Xuewu Qian
Yanhua Zhu
Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer
Sensors
self-gradient compensation
full-tensor airborne gravity gradiometer
gravity gradiometry
rotating accelerometer gravity gradiometer
author_facet Xuewu Qian
Yanhua Zhu
author_sort Xuewu Qian
title Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer
title_short Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer
title_full Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer
title_fullStr Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer
title_full_unstemmed Self-Gradient Compensation of Full-Tensor Airborne Gravity Gradiometer
title_sort self-gradient compensation of full-tensor airborne gravity gradiometer
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2019-04-01
description In the process of airborne gravity gradiometry for the full-tensor airborne gravity gradiometer (FTAGG), the attitude of the carrier and the fuel mass will seriously affect the accuracy of gravity gradiometry. A self-gradient is the gravity gradient produced by the surrounding masses, and the surrounding masses include distribution mass for the carrier mass and fuel mass. In this paper, in order to improve the accuracy of airborne gravity gradiometry, a self-gradient compensation model is proposed for FTAGG. The self-gradient compensation model is a fuction of attitude for carrier and time, and it includes parameters ralated to the distribution mass for the carrier. The influence of carrier attitude and fuel mass on the self-gradient are simulated and analyzed. Simulation shows that the self-gradient tensor element <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </semantics> </math> </inline-formula> are greatly affected by the middle part of the carrier, and the self-gradient tensor element <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">&#915;</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </semantics> </math> </inline-formula> is affected by the carrier&#8217;s fuel mass in three attitudes. Further simulation experiments show that the presented self-gradient compensation method is valid, and the error of the self-gradient compensation is within 0.1 Eu. Furthermore, this method can provide an important reference for improving the accuracy of aviation gravity gradiometry.
topic self-gradient compensation
full-tensor airborne gravity gradiometer
gravity gradiometry
rotating accelerometer gravity gradiometer
url https://www.mdpi.com/1424-8220/19/8/1950
work_keys_str_mv AT xuewuqian selfgradientcompensationoffulltensorairbornegravitygradiometer
AT yanhuazhu selfgradientcompensationoffulltensorairbornegravitygradiometer
_version_ 1725061948929736704