The Influence of a Hemostatic Agent on Adhesion Strength and Microleakage of Composite Resin Restorations

The aim of the present study was to assess the side effect of an aluminum chloride hemostatic agent on adhesion strength and microleakage of composite resin restorations bonded with the one-bottle total-etch adhesive system. Methods: We prepared 10 human tooth samples (extracted premolars for ortho...

Full description

Bibliographic Details
Main Authors: Timur V. Melkumyan, Anjela D. Dadamova, Khaidar P. Kamilov
Format: Article
Language:English
Published: International Medical Research and Development Corporation 2018-12-01
Series:International Journal of Biomedicine
Subjects:
Online Access:http://ijbm.org/articles/IJBM_8(4)_OA_18.pdf
Description
Summary:The aim of the present study was to assess the side effect of an aluminum chloride hemostatic agent on adhesion strength and microleakage of composite resin restorations bonded with the one-bottle total-etch adhesive system. Methods: We prepared 10 human tooth samples (extracted premolars for orthodontic purposes) in accordance with the Ultratest technique for the assessment of shear bond strength (SBS), and another 10 human tooth samples for microleakage assessment. The SBS tooth samples (n=10) were subjected to the two following tests: In Test 1, before traditional adhesive protocol, the aluminum chloride hemostatic agent was rubbed into a surface dentin for 60 sec with the help of a metal dento-infusor tip and washed with distilled water. In Test 2, just traditional wet bonding was performed. In the group of teeth (n=10) for microleakage assessment, we prepared two round artificial cavities of similar size (3 mm in diameter, 1 mm deep) in each tooth sample on the proximal surfaces with half in enamel and another half in root dentin. All created cavities (n=20) were divided into two subgroups. In cavities of Subgroup 1 (n=10), the adhesive protocol and filling with composite resin were performed after preliminary rubbing-in of the hemostatic agent. In Subgroup 2 (n=10), cavities were merely restored according to the rules for applying the one-bottle total-etch adhesive system. Assessment of microleakage was performed at the enamel margin and dentin margin. Scanning electron microscopy was used to evaluate the microstructure morphology of a hybrid layer, formed without the side effect of a hemostatic agent and after application of it. Results: The average score of SBS was 7.42±3.5 kg in Test 2 and 3.87±2.45 kg in Test 1. Therefore, the side effect of the aluminum chloride hemostatic agent was detrimental to the bond strength of the composite resin to human dentin and significantly decreased the quality of adhesion by 1.92 times (P<0.05). The average scores of dye penetration through the enamel-composite microgap in both subgroups were low (0.5±0.52 CU in Subgroup 1 and 0.3±0.48 CU in Subgroup 2) and had no significant difference (P>0.05). However, the visual analysis of the dentin-composite junction of sectioned tooth samples demonstrated 2.1 times more microleakage in Subgroup 1 (1.7±0.95 CU) than in Subgroup 2 (0.8±0.79 CU), but the difference was not significant (P>0.05). In view of clinical situations with no possibility to escape the application of a hemostatic agent in cases of possible capillary hemorrhage and crevicular fluid leakage, it could be wise before running an adhesive protocol to cut off the portion of surface dentin that was exposed to an aluminum chloride hemostatic agent side effect.
ISSN:2158-0510
2158-0529