Probing lasting cryoinjuries to oocyte-embryo transcriptome.

Clinical applications of oocytes cryopreservation include preservation of future fertility of young cancer patients, substitution of embryo freezing to avoid associated legal and ethical issues, and delaying childbearing years. While the outcome of oocyte cryopreservation has recently been improved,...

Full description

Bibliographic Details
Main Authors: Binnur Eroglu, Edyta A Szurek, Peter Schall, Keith E Latham, Ali Eroglu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0231108
id doaj-16b3b7da59db4ee28aa1db8bac5ef18c
record_format Article
spelling doaj-16b3b7da59db4ee28aa1db8bac5ef18c2021-03-03T21:40:38ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01154e023110810.1371/journal.pone.0231108Probing lasting cryoinjuries to oocyte-embryo transcriptome.Binnur ErogluEdyta A SzurekPeter SchallKeith E LathamAli ErogluClinical applications of oocytes cryopreservation include preservation of future fertility of young cancer patients, substitution of embryo freezing to avoid associated legal and ethical issues, and delaying childbearing years. While the outcome of oocyte cryopreservation has recently been improved, currently used vitrification method still suffer from increased biosafety risk and handling issues while slow freezing techniques yield overall low success. Understanding better the mechanism of cryopreservation-induced injuries may lead to development of more reliable and safe methods for oocyte cryopreservation. Using the mouse model, a microarray study was conducted on oocyte cryopreservation to identify cryoinjuries to transcriptionally active genome. To this end, metaphase II (MII) oocytes were subjected to standard slow freezing, and then analyzed at the four-cell stage after embryonic genome activation. Non-frozen four-cell embryos served as controls. Differentially expressed genes were identified and validated using RT-PCR. Embryos produced from the cryopreserved oocytes displayed 200 upregulated and 105 downregulated genes, associated with the regulation of mitochondrial function, protein ubiquitination and maintenance, cellular response to stress and oxidative states, fatty acid and lipid regulation/metabolism, and cell cycle maintenance. These findings reveal previously unrecognized effects of standard slow oocyte freezing on embryonic gene expression, which can be used to guide improvement of oocyte cryopreservation methods.https://doi.org/10.1371/journal.pone.0231108
collection DOAJ
language English
format Article
sources DOAJ
author Binnur Eroglu
Edyta A Szurek
Peter Schall
Keith E Latham
Ali Eroglu
spellingShingle Binnur Eroglu
Edyta A Szurek
Peter Schall
Keith E Latham
Ali Eroglu
Probing lasting cryoinjuries to oocyte-embryo transcriptome.
PLoS ONE
author_facet Binnur Eroglu
Edyta A Szurek
Peter Schall
Keith E Latham
Ali Eroglu
author_sort Binnur Eroglu
title Probing lasting cryoinjuries to oocyte-embryo transcriptome.
title_short Probing lasting cryoinjuries to oocyte-embryo transcriptome.
title_full Probing lasting cryoinjuries to oocyte-embryo transcriptome.
title_fullStr Probing lasting cryoinjuries to oocyte-embryo transcriptome.
title_full_unstemmed Probing lasting cryoinjuries to oocyte-embryo transcriptome.
title_sort probing lasting cryoinjuries to oocyte-embryo transcriptome.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2020-01-01
description Clinical applications of oocytes cryopreservation include preservation of future fertility of young cancer patients, substitution of embryo freezing to avoid associated legal and ethical issues, and delaying childbearing years. While the outcome of oocyte cryopreservation has recently been improved, currently used vitrification method still suffer from increased biosafety risk and handling issues while slow freezing techniques yield overall low success. Understanding better the mechanism of cryopreservation-induced injuries may lead to development of more reliable and safe methods for oocyte cryopreservation. Using the mouse model, a microarray study was conducted on oocyte cryopreservation to identify cryoinjuries to transcriptionally active genome. To this end, metaphase II (MII) oocytes were subjected to standard slow freezing, and then analyzed at the four-cell stage after embryonic genome activation. Non-frozen four-cell embryos served as controls. Differentially expressed genes were identified and validated using RT-PCR. Embryos produced from the cryopreserved oocytes displayed 200 upregulated and 105 downregulated genes, associated with the regulation of mitochondrial function, protein ubiquitination and maintenance, cellular response to stress and oxidative states, fatty acid and lipid regulation/metabolism, and cell cycle maintenance. These findings reveal previously unrecognized effects of standard slow oocyte freezing on embryonic gene expression, which can be used to guide improvement of oocyte cryopreservation methods.
url https://doi.org/10.1371/journal.pone.0231108
work_keys_str_mv AT binnureroglu probinglastingcryoinjuriestooocyteembryotranscriptome
AT edytaaszurek probinglastingcryoinjuriestooocyteembryotranscriptome
AT peterschall probinglastingcryoinjuriestooocyteembryotranscriptome
AT keithelatham probinglastingcryoinjuriestooocyteembryotranscriptome
AT alieroglu probinglastingcryoinjuriestooocyteembryotranscriptome
_version_ 1714815599305031680