Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth

In this work, the existence and nonexistence of stationary radial solutions to the elliptic partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-se...

Full description

Bibliographic Details
Main Authors: Amit K Verma, Biswajit Pandit, Ravi P. Agarwal
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/7/774
id doaj-1650775f1a9148f599e5d0e8b7957df0
record_format Article
spelling doaj-1650775f1a9148f599e5d0e8b7957df02021-04-02T23:02:47ZengMDPI AGMathematics2227-73902021-04-01977477410.3390/math9070774Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial GrowthAmit K Verma0Biswajit Pandit1Ravi P. Agarwal2Department of Mathematics, Indian Institute of Technology Patna, Patna 801106, Bihar, IndiaDepartment of Mathematics, Indian Institute of Technology Patna, Patna 801106, Bihar, IndiaDepartment of Mathematics, Texas A & M, University-Kingsville, 700 University Blvd., MSC 172, Kingsville, TX 78363-8202, USAIn this work, the existence and nonexistence of stationary radial solutions to the elliptic partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-self adjoint, it does not have exact solutions, and it admits multiple solutions. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> measures the intensity of the flux and <i>G</i> is stationary flux. The solution depends on the size of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>. We use a monotone iterative technique and integral equations along with upper and lower solutions to prove that solutions exist. We establish the qualitative properties of the solutions and provide bounds for the values of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, which help us to separate existence from nonexistence. These results complement some existing results in the literature. To verify the analytical results, we also propose a new computational iterative technique and use it to verify the bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> and the dependence of solutions for these computed bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/7/774radial solutionsSBVPsnon-self-adjoint operatorGreen’s functionlower solutionupper solution
collection DOAJ
language English
format Article
sources DOAJ
author Amit K Verma
Biswajit Pandit
Ravi P. Agarwal
spellingShingle Amit K Verma
Biswajit Pandit
Ravi P. Agarwal
Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
Mathematics
radial solutions
SBVPs
non-self-adjoint operator
Green’s function
lower solution
upper solution
author_facet Amit K Verma
Biswajit Pandit
Ravi P. Agarwal
author_sort Amit K Verma
title Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
title_short Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
title_full Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
title_fullStr Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
title_full_unstemmed Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
title_sort analysis and computation of solutions for a class of nonlinear sbvps arising in epitaxial growth
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-04-01
description In this work, the existence and nonexistence of stationary radial solutions to the elliptic partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-self adjoint, it does not have exact solutions, and it admits multiple solutions. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> measures the intensity of the flux and <i>G</i> is stationary flux. The solution depends on the size of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>. We use a monotone iterative technique and integral equations along with upper and lower solutions to prove that solutions exist. We establish the qualitative properties of the solutions and provide bounds for the values of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, which help us to separate existence from nonexistence. These results complement some existing results in the literature. To verify the analytical results, we also propose a new computational iterative technique and use it to verify the bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> and the dependence of solutions for these computed bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>.
topic radial solutions
SBVPs
non-self-adjoint operator
Green’s function
lower solution
upper solution
url https://www.mdpi.com/2227-7390/9/7/774
work_keys_str_mv AT amitkverma analysisandcomputationofsolutionsforaclassofnonlinearsbvpsarisinginepitaxialgrowth
AT biswajitpandit analysisandcomputationofsolutionsforaclassofnonlinearsbvpsarisinginepitaxialgrowth
AT ravipagarwal analysisandcomputationofsolutionsforaclassofnonlinearsbvpsarisinginepitaxialgrowth
_version_ 1721544586892935168