Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth
In this work, the existence and nonexistence of stationary radial solutions to the elliptic partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-se...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/7/774 |
id |
doaj-1650775f1a9148f599e5d0e8b7957df0 |
---|---|
record_format |
Article |
spelling |
doaj-1650775f1a9148f599e5d0e8b7957df02021-04-02T23:02:47ZengMDPI AGMathematics2227-73902021-04-01977477410.3390/math9070774Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial GrowthAmit K Verma0Biswajit Pandit1Ravi P. Agarwal2Department of Mathematics, Indian Institute of Technology Patna, Patna 801106, Bihar, IndiaDepartment of Mathematics, Indian Institute of Technology Patna, Patna 801106, Bihar, IndiaDepartment of Mathematics, Texas A & M, University-Kingsville, 700 University Blvd., MSC 172, Kingsville, TX 78363-8202, USAIn this work, the existence and nonexistence of stationary radial solutions to the elliptic partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-self adjoint, it does not have exact solutions, and it admits multiple solutions. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> measures the intensity of the flux and <i>G</i> is stationary flux. The solution depends on the size of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>. We use a monotone iterative technique and integral equations along with upper and lower solutions to prove that solutions exist. We establish the qualitative properties of the solutions and provide bounds for the values of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, which help us to separate existence from nonexistence. These results complement some existing results in the literature. To verify the analytical results, we also propose a new computational iterative technique and use it to verify the bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> and the dependence of solutions for these computed bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/7/774radial solutionsSBVPsnon-self-adjoint operatorGreen’s functionlower solutionupper solution |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Amit K Verma Biswajit Pandit Ravi P. Agarwal |
spellingShingle |
Amit K Verma Biswajit Pandit Ravi P. Agarwal Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth Mathematics radial solutions SBVPs non-self-adjoint operator Green’s function lower solution upper solution |
author_facet |
Amit K Verma Biswajit Pandit Ravi P. Agarwal |
author_sort |
Amit K Verma |
title |
Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth |
title_short |
Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth |
title_full |
Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth |
title_fullStr |
Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth |
title_full_unstemmed |
Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth |
title_sort |
analysis and computation of solutions for a class of nonlinear sbvps arising in epitaxial growth |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-04-01 |
description |
In this work, the existence and nonexistence of stationary radial solutions to the elliptic partial differential equation arising in the molecular beam epitaxy are studied. Since we are interested in radial solutions, we focus on the fourth-order singular ordinary differential equation. It is non-self adjoint, it does not have exact solutions, and it admits multiple solutions. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> measures the intensity of the flux and <i>G</i> is stationary flux. The solution depends on the size of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>. We use a monotone iterative technique and integral equations along with upper and lower solutions to prove that solutions exist. We establish the qualitative properties of the solutions and provide bounds for the values of the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, which help us to separate existence from nonexistence. These results complement some existing results in the literature. To verify the analytical results, we also propose a new computational iterative technique and use it to verify the bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> and the dependence of solutions for these computed bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>. |
topic |
radial solutions SBVPs non-self-adjoint operator Green’s function lower solution upper solution |
url |
https://www.mdpi.com/2227-7390/9/7/774 |
work_keys_str_mv |
AT amitkverma analysisandcomputationofsolutionsforaclassofnonlinearsbvpsarisinginepitaxialgrowth AT biswajitpandit analysisandcomputationofsolutionsforaclassofnonlinearsbvpsarisinginepitaxialgrowth AT ravipagarwal analysisandcomputationofsolutionsforaclassofnonlinearsbvpsarisinginepitaxialgrowth |
_version_ |
1721544586892935168 |