Multiagent Based Decentralized Traffic Light Control for Large Urban Transportation System

Intelligent traffic control is an important issue of the modern transportation system. However, in large-scale urban transportation systems, traditional centralized coordination methods suffer bottlenecks in both communication and computation. Decentralized control is hard if there is very limited...

Full description

Bibliographic Details
Main Authors: Yang Xu, Yulin Zhang, Ming Liu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2014/104349
Description
Summary:Intelligent traffic control is an important issue of the modern transportation system. However, in large-scale urban transportation systems, traditional centralized coordination methods suffer bottlenecks in both communication and computation. Decentralized control is hard if there is very limited observation to the whole network as evidences to support joint traffic coordination decisions. In this paper, we proposed a novel decentralized, multiagent based approach for massive traffic lights coordination to promote the large-scale green transportation. Considering that only the traffic from the adjacent intersections may affect the state of a given intersection one time ahead, the key of our approach is using the observations of a local intersection and its neighbors as evidences to support the traffic light coordination decisions. Therefore, we can model the interactions as decentralized agents coordinating with a decision theoretical model. Within a local intersection, constraint optimizing agents are designed to efficiently search for joint activities of the lights. Since this approach involves only local intersection cooperation, it is well scalable and easily implemented with small communication overhead. In the last section, we present our software design on this approach and based on our simulation, this approach is feasible to a large urban transportation system.
ISSN:1024-123X
1563-5147