Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study
We investigate how the size, the number, and the spatial arrangement of identical nonoverlapping reactive patches on a sphere influence the overall reaction kinetics of bimolecular diffusion-limited (or diffusion-controlled) reactions that occur between the patches and the reactants diffusing around...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/21/3/997 |
id |
doaj-163a908f08804b0d811fc3caf86d28e5 |
---|---|
record_format |
Article |
spelling |
doaj-163a908f08804b0d811fc3caf86d28e52020-11-25T03:32:38ZengMDPI AGInternational Journal of Molecular Sciences1422-00672020-02-0121399710.3390/ijms21030997ijms21030997Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive StudyChangsun Eun0Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, KoreaWe investigate how the size, the number, and the spatial arrangement of identical nonoverlapping reactive patches on a sphere influence the overall reaction kinetics of bimolecular diffusion-limited (or diffusion-controlled) reactions that occur between the patches and the reactants diffusing around the sphere. First, in the arrangement of two patches, it is known that the overall rate constant increases as the two patches become more separated from each other but decreases when they become closer to each other. In this work, we further study the dependence of the patch arrangement on the kinetics with three and four patches using the finite element method (FEM). In addition to the patch arrangement, the kinetics is also dependent on the number and size of the patches. Therefore, we study such dependences by calculating the overall rate constants using the FEM for various cases, especially for large-sized patches, and this study is complementary to the kinetic studies that were performed by Brownian dynamics (BD) simulation methods for small-sized patches. The numerical FEM and BD simulation results are compared with the results from various kinetic theories to evaluate the accuracies of the theories. Remarkably, this comparison indicates that our theory, which was recently developed based on the curvature-dependent kinetic theory, shows good agreement with the FEM and BD numerical results. From this validation, we use our theory to further study the variation of the overall rate constant when the patches are arbitrarily arranged on a sphere. Our theory also confirms that to maximize the overall rate constant, we need to break large-sized patches into smaller-sized patches and arrange them to be maximally separated to reduce their competition.https://www.mdpi.com/1422-0067/21/3/997diffusion-limited reactionrate constantdiffusion-controlled reactioncurvaturekineticsfinite element methodberg-purcell modelcompetition |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Changsun Eun |
spellingShingle |
Changsun Eun Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study International Journal of Molecular Sciences diffusion-limited reaction rate constant diffusion-controlled reaction curvature kinetics finite element method berg-purcell model competition |
author_facet |
Changsun Eun |
author_sort |
Changsun Eun |
title |
Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study |
title_short |
Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study |
title_full |
Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study |
title_fullStr |
Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study |
title_full_unstemmed |
Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-Limited Reaction Kinetics: A Comprehensive Study |
title_sort |
effects of the size, the number, and the spatial arrangement of reactive patches on a sphere on diffusion-limited reaction kinetics: a comprehensive study |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2020-02-01 |
description |
We investigate how the size, the number, and the spatial arrangement of identical nonoverlapping reactive patches on a sphere influence the overall reaction kinetics of bimolecular diffusion-limited (or diffusion-controlled) reactions that occur between the patches and the reactants diffusing around the sphere. First, in the arrangement of two patches, it is known that the overall rate constant increases as the two patches become more separated from each other but decreases when they become closer to each other. In this work, we further study the dependence of the patch arrangement on the kinetics with three and four patches using the finite element method (FEM). In addition to the patch arrangement, the kinetics is also dependent on the number and size of the patches. Therefore, we study such dependences by calculating the overall rate constants using the FEM for various cases, especially for large-sized patches, and this study is complementary to the kinetic studies that were performed by Brownian dynamics (BD) simulation methods for small-sized patches. The numerical FEM and BD simulation results are compared with the results from various kinetic theories to evaluate the accuracies of the theories. Remarkably, this comparison indicates that our theory, which was recently developed based on the curvature-dependent kinetic theory, shows good agreement with the FEM and BD numerical results. From this validation, we use our theory to further study the variation of the overall rate constant when the patches are arbitrarily arranged on a sphere. Our theory also confirms that to maximize the overall rate constant, we need to break large-sized patches into smaller-sized patches and arrange them to be maximally separated to reduce their competition. |
topic |
diffusion-limited reaction rate constant diffusion-controlled reaction curvature kinetics finite element method berg-purcell model competition |
url |
https://www.mdpi.com/1422-0067/21/3/997 |
work_keys_str_mv |
AT changsuneun effectsofthesizethenumberandthespatialarrangementofreactivepatchesonasphereondiffusionlimitedreactionkineticsacomprehensivestudy |
_version_ |
1724567059601293312 |