On monotonous separately continuous functions

Let T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space.  The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each  variable (“t” and  “x”)  separately  and  function ƒx(t)  = ƒ(t,x) is  monotonous  on T for  every x ∈ X,  th...

Full description

Bibliographic Details
Main Author: Yaroslav I. Grushka
Format: Article
Language:English
Published: Universitat Politècnica de València 2019-04-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/9817
id doaj-1602fcc0090a43b5a9293a0e45b0c76a
record_format Article
spelling doaj-1602fcc0090a43b5a9293a0e45b0c76a2020-11-25T00:28:29ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472019-04-01201757910.4995/agt.2019.98177385On monotonous separately continuous functionsYaroslav I. Grushka0Institute of Mathematics NAS of UkraineLet T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space.  The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each  variable (“t” and  “x”)  separately  and  function ƒx(t)  = ƒ(t,x) is  monotonous  on T for  every x ∈ X,  then ƒ is  continuous  mapping  from T × X to T1,  where T and T1 are  considered  as  topological  spaces  under  the order topology and T × X is considered as topological space under the Tychonoff topology on the Cartesian  product of topological spaces T and X.https://polipapers.upv.es/index.php/AGT/article/view/9817separately continuous mappingslinearly ordered topological spacesYoung's theorem
collection DOAJ
language English
format Article
sources DOAJ
author Yaroslav I. Grushka
spellingShingle Yaroslav I. Grushka
On monotonous separately continuous functions
Applied General Topology
separately continuous mappings
linearly ordered topological spaces
Young's theorem
author_facet Yaroslav I. Grushka
author_sort Yaroslav I. Grushka
title On monotonous separately continuous functions
title_short On monotonous separately continuous functions
title_full On monotonous separately continuous functions
title_fullStr On monotonous separately continuous functions
title_full_unstemmed On monotonous separately continuous functions
title_sort on monotonous separately continuous functions
publisher Universitat Politècnica de València
series Applied General Topology
issn 1576-9402
1989-4147
publishDate 2019-04-01
description Let T = (T, ≤) and T1= (T1 , ≤1) be linearly ordered sets and X be a topological space.  The main result of the paper is the following: If function ƒ(t,x) : T × X → T1 is continuous in each  variable (“t” and  “x”)  separately  and  function ƒx(t)  = ƒ(t,x) is  monotonous  on T for  every x ∈ X,  then ƒ is  continuous  mapping  from T × X to T1,  where T and T1 are  considered  as  topological  spaces  under  the order topology and T × X is considered as topological space under the Tychonoff topology on the Cartesian  product of topological spaces T and X.
topic separately continuous mappings
linearly ordered topological spaces
Young's theorem
url https://polipapers.upv.es/index.php/AGT/article/view/9817
work_keys_str_mv AT yaroslavigrushka onmonotonousseparatelycontinuousfunctions
_version_ 1725335949704953856