Existence Results for a Michaud Fractional, Nonlocal, and Randomly Position Structured Fragmentation Model

Until now, classical models of clusters’ fission remain unable to fully explain strange phenomena like the phenomenon of shattering (Ziff and McGrady, 1987) and the sudden appearance of infinitely many particles in some systems having initial finite number of particles. That is why there is a need t...

Full description

Bibliographic Details
Main Authors: Emile Franc Doungmo Goufo, Riëtte Maritz, Stella Mugisha
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2014/361234
Description
Summary:Until now, classical models of clusters’ fission remain unable to fully explain strange phenomena like the phenomenon of shattering (Ziff and McGrady, 1987) and the sudden appearance of infinitely many particles in some systems having initial finite number of particles. That is why there is a need to extend classical models to models with fractional derivative order and use new and various techniques to analyze them. In this paper, we prove the existence of strongly continuous solution operators for nonlocal fragmentation models with Michaud time derivative of fractional order (Samko et al., 1993). We focus on the case where the splitting rate is dependent on size and position and where new particles generating from fragmentation are distributed in space randomly according to some probability density. In the analysis, we make use of the substochastic semigroup theory, the subordination principle for differential equations of fractional order (Prüss, 1993, Bazhlekova, 2000), the analogy of Hille-Yosida theorem for fractional model (Prüss, 1993), and useful properties of Mittag-Leffler relaxation function (Berberan-Santos, 2005). We are then able to show that the solution operator to the full model is positive and contractive.
ISSN:1024-123X
1563-5147