Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections
<p>Lake Victoria, the second largest freshwater lake in the world, is one of the major sources of the Nile river. The outlet to the Nile is controlled by two hydropower dams of which the allowed discharge is dictated by the Agreed Curve, an equation relating outflow to lake level. Some regi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-10-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | https://www.hydrol-earth-syst-sci.net/22/5527/2018/hess-22-5527-2018.pdf |
id |
doaj-15d772f9ba0d49b5bbb932535e441679 |
---|---|
record_format |
Article |
spelling |
doaj-15d772f9ba0d49b5bbb932535e4416792020-11-25T00:09:01ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382018-10-01225527554910.5194/hess-22-5527-2018Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projectionsI. Vanderkelen0N. P. M. van Lipzig1W. Thiery2W. Thiery3Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, BelgiumDepartment of Earth and Environmental Sciences, KU Leuven, Leuven, BelgiumDepartment of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, BelgiumInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland<p>Lake Victoria, the second largest freshwater lake in the world, is one of the major sources of the Nile river. The outlet to the Nile is controlled by two hydropower dams of which the allowed discharge is dictated by the Agreed Curve, an equation relating outflow to lake level. Some regional climate models project a decrease in precipitation and an increase in evaporation over Lake Victoria, with potential important implications for its water balance and resulting level. Yet, little is known about the potential consequences of climate change for the water balance of Lake Victoria. In this second part of a two-paper series, we feed a new water balance model for Lake Victoria presented in the first part with climate simulations available through the COordinated Regional Climate Downscaling Experiment (CORDEX) Africa framework. Our results reveal that most regional climate models are not capable of giving a realistic representation of the water balance of Lake Victoria and therefore require bias correction. For two emission scenarios (RCPs 4.5 and 8.5), the decrease in precipitation over the lake and an increase in evaporation are compensated by an increase in basin precipitation leading to more inflow. The future lake level projections show that the dam management scenario and not the emission scenario is the main controlling factor of the future water level evolution. Moreover, inter-model uncertainties are larger than emission scenario uncertainties. The comparison of four idealized future management scenarios pursuing certain policy objectives (electricity generation, navigation reliability and environmental conservation) uncovers that the only sustainable management scenario is mimicking natural lake level fluctuations by regulating outflow according to the Agreed Curve. The associated outflow encompasses, however, ranges from 14 m<sup>3</sup> day<sup>−1</sup> (−85 %) to 200 m<sup>3</sup> day<sup>−1</sup> (+100 %) within this ensemble, highlighting that future hydropower generation and downstream water availability may strongly change in the next decades even if dam management adheres to he Agreed Curve. Our results overall underline that managing the dam according to the Agreed Curve is a key prerequisite for sustainable future lake levels, but that under this management scenario, climate change might potentially induce profound changes in lake level and outflow volume.</p>https://www.hydrol-earth-syst-sci.net/22/5527/2018/hess-22-5527-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
I. Vanderkelen N. P. M. van Lipzig W. Thiery W. Thiery |
spellingShingle |
I. Vanderkelen N. P. M. van Lipzig W. Thiery W. Thiery Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections Hydrology and Earth System Sciences |
author_facet |
I. Vanderkelen N. P. M. van Lipzig W. Thiery W. Thiery |
author_sort |
I. Vanderkelen |
title |
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections |
title_short |
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections |
title_full |
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections |
title_fullStr |
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections |
title_full_unstemmed |
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections |
title_sort |
modelling the water balance of lake victoria (east africa) – part 2: future projections |
publisher |
Copernicus Publications |
series |
Hydrology and Earth System Sciences |
issn |
1027-5606 1607-7938 |
publishDate |
2018-10-01 |
description |
<p>Lake Victoria, the second largest freshwater lake in the world, is one of the
major sources of the Nile river. The outlet to the Nile is controlled by two
hydropower dams of which the allowed discharge is dictated by the Agreed
Curve, an equation relating outflow to lake level. Some regional climate
models project a decrease in precipitation and an increase in evaporation
over Lake Victoria, with potential important implications for its water
balance and resulting level. Yet, little is known about the potential
consequences of climate change for the water balance of Lake Victoria. In
this second part of a two-paper series, we feed a new water balance model for
Lake Victoria presented in the first part with climate simulations available
through the COordinated Regional Climate Downscaling
Experiment (CORDEX) Africa
framework. Our results reveal that most regional climate models are not
capable of giving a realistic representation of the water balance of Lake
Victoria and therefore require bias correction. For two emission scenarios
(RCPs 4.5 and 8.5), the decrease in precipitation over the lake and an
increase in evaporation are compensated by an increase in basin precipitation
leading to more inflow. The future lake level projections show that the dam
management scenario and not the emission scenario is the main controlling
factor of the future water level evolution. Moreover, inter-model
uncertainties are larger than emission scenario uncertainties. The comparison
of four idealized future management scenarios pursuing certain policy
objectives (electricity generation, navigation reliability and environmental
conservation) uncovers that the only sustainable management scenario is
mimicking natural lake level fluctuations by regulating outflow according to
the Agreed Curve. The associated outflow encompasses, however, ranges from
14 m<sup>3</sup> day<sup>−1</sup> (−85 %) to 200 m<sup>3</sup> day<sup>−1</sup> (+100 %)
within this ensemble, highlighting that future hydropower generation and
downstream water availability may strongly change in the next decades even if
dam management adheres to he Agreed Curve. Our results overall underline that
managing the dam according to the Agreed Curve is a key prerequisite for
sustainable future lake levels, but that under this management scenario,
climate change might potentially induce profound changes in lake level and
outflow volume.</p> |
url |
https://www.hydrol-earth-syst-sci.net/22/5527/2018/hess-22-5527-2018.pdf |
work_keys_str_mv |
AT ivanderkelen modellingthewaterbalanceoflakevictoriaeastafricapart2futureprojections AT npmvanlipzig modellingthewaterbalanceoflakevictoriaeastafricapart2futureprojections AT wthiery modellingthewaterbalanceoflakevictoriaeastafricapart2futureprojections AT wthiery modellingthewaterbalanceoflakevictoriaeastafricapart2futureprojections |
_version_ |
1725413386697572352 |