Bifurcation of Solutions from Infinity at an Infinity Multiplicity Eigenvalue for a Semilinear Double-Periodic Hyperbolic Problem
We consider the existence of weak solutions to the wave equationssubject to the double-periodic conditions . Whenthe solutions goes to infinity. We are no assuming monotonicity on the nonlinearity . We use Leray-Schauder Degree Theory and Contraction Principle.
Main Author: | Arturo Sanjuán |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad Distrital Francisco José de Caldas
2016-12-01
|
Series: | Revista Científica |
Subjects: | |
Online Access: | http://revistas.udistrital.edu.co/ojs/index.php/revcie/article/view/10897 |
Similar Items
-
EXPONENCIAL DECAY FOR THE SEMILINEAR WAVE EQUATION WITH POTENTIAL AND LOCAL DISTRIBUTED DAMIPING
by: Alfonso Pérez Salvatierra, et al.
Published: (2014-09-01) -
Controlabilidad de ecuaciones de evolución semilineales con impulsos y retardos
by: Jesús Aponte, et al.
Published: (2020-06-01) -
EXISTENCIA Y UNICIDAD DE SOLUCIONES REGULARES DE LA ECUACIÓN DE ONDA SEMILINEAL CON DISIPACIÓN LOCALIZADA EN Rn
by: Alfonso Perez Salvatierra, et al.
Published: (2014-09-01) -
Aplicación del método Faedo-Galerkin a una ecuación de onda semilineal con disipación localizada
by: Carlos Alberto Peña Miranda, et al.
Published: (2020-12-01) -
False paradoxes: the first faces of the infinity concept in the context of mathematical science
by: Gisele de Lourdes Monteiro, et al.
Published: (2019-07-01)