Short Remarks on Complete Monotonicity of Some Functions
In this paper, we show that the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>m</mi> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/4/537 |
id |
doaj-15b6bf19ec844bd086aff35bd00e3d33 |
---|---|
record_format |
Article |
spelling |
doaj-15b6bf19ec844bd086aff35bd00e3d332020-11-25T02:21:57ZengMDPI AGMathematics2227-73902020-04-01853753710.3390/math8040537Short Remarks on Complete Monotonicity of Some FunctionsLadislav Matejíčka0Faculty of Industrial Technologies in Púchov, Trenčín University of Alexander Dubček in Trenčín, I. Krasku 491/30, 02001 Púchov, SlovakiaIn this paper, we show that the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>m</mi> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are not completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>β</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is the Nielsen’s <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-function and we prove the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>ψ</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>></mo> <mn>2</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> denotes the logarithmic derivative of Euler’s gamma function .https://www.mdpi.com/2227-7390/8/4/537completely monotonic functionslaplace transforminequalityNielsen’s β-functionpolygamma functions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ladislav Matejíčka |
spellingShingle |
Ladislav Matejíčka Short Remarks on Complete Monotonicity of Some Functions Mathematics completely monotonic functions laplace transform inequality Nielsen’s β-function polygamma functions |
author_facet |
Ladislav Matejíčka |
author_sort |
Ladislav Matejíčka |
title |
Short Remarks on Complete Monotonicity of Some Functions |
title_short |
Short Remarks on Complete Monotonicity of Some Functions |
title_full |
Short Remarks on Complete Monotonicity of Some Functions |
title_fullStr |
Short Remarks on Complete Monotonicity of Some Functions |
title_full_unstemmed |
Short Remarks on Complete Monotonicity of Some Functions |
title_sort |
short remarks on complete monotonicity of some functions |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-04-01 |
description |
In this paper, we show that the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>m</mi> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are not completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>β</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is the Nielsen’s <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-function and we prove the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>ψ</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>></mo> <mn>2</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> denotes the logarithmic derivative of Euler’s gamma function . |
topic |
completely monotonic functions laplace transform inequality Nielsen’s β-function polygamma functions |
url |
https://www.mdpi.com/2227-7390/8/4/537 |
work_keys_str_mv |
AT ladislavmatejicka shortremarksoncompletemonotonicityofsomefunctions |
_version_ |
1724864398255718400 |