Short Remarks on Complete Monotonicity of Some Functions

In this paper, we show that the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>m</mi> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo...

Full description

Bibliographic Details
Main Author: Ladislav Matejíčka
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/4/537
id doaj-15b6bf19ec844bd086aff35bd00e3d33
record_format Article
spelling doaj-15b6bf19ec844bd086aff35bd00e3d332020-11-25T02:21:57ZengMDPI AGMathematics2227-73902020-04-01853753710.3390/math8040537Short Remarks on Complete Monotonicity of Some FunctionsLadislav Matejíčka0Faculty of Industrial Technologies in Púchov, Trenčín University of Alexander Dubček in Trenčín, I. Krasku 491/30, 02001 Púchov, SlovakiaIn this paper, we show that the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>m</mi> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are not completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>β</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is the Nielsen’s <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-function and we prove the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>ψ</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>></mo> <mn>2</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> denotes the logarithmic derivative of Euler’s gamma function .https://www.mdpi.com/2227-7390/8/4/537completely monotonic functionslaplace transforminequalityNielsen’s β-functionpolygamma functions
collection DOAJ
language English
format Article
sources DOAJ
author Ladislav Matejíčka
spellingShingle Ladislav Matejíčka
Short Remarks on Complete Monotonicity of Some Functions
Mathematics
completely monotonic functions
laplace transform
inequality
Nielsen’s β-function
polygamma functions
author_facet Ladislav Matejíčka
author_sort Ladislav Matejíčka
title Short Remarks on Complete Monotonicity of Some Functions
title_short Short Remarks on Complete Monotonicity of Some Functions
title_full Short Remarks on Complete Monotonicity of Some Functions
title_fullStr Short Remarks on Complete Monotonicity of Some Functions
title_full_unstemmed Short Remarks on Complete Monotonicity of Some Functions
title_sort short remarks on complete monotonicity of some functions
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-04-01
description In this paper, we show that the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>m</mi> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are not completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>β</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is the Nielsen’s <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-function and we prove the functions <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>β</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mrow> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>|</mo> <msup> <mi>ψ</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are completely monotonic on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>></mo> <mn>2</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> denotes the logarithmic derivative of Euler’s gamma function .
topic completely monotonic functions
laplace transform
inequality
Nielsen’s β-function
polygamma functions
url https://www.mdpi.com/2227-7390/8/4/537
work_keys_str_mv AT ladislavmatejicka shortremarksoncompletemonotonicityofsomefunctions
_version_ 1724864398255718400