Summary: | The determinants of providing affordable electricity for all in top energy-consuming African countries vary and are in line with the percentage of the current population with access to electricity and volatility in a country’s electric power system, but there is rare evidence of such research. This study categorizes Egypt–Algeria as a panel of countries with 100% access to electricity, and Nigeria–South Africa as otherwise, to investigate the causal relationship between domestic electricity demand, renewable electricity generation, population, and GDP. The study proposed and implemented a novel machine learning model for viable and volatility-driven pathways for renewable electric power transition up to 2030. Results from Pedroni cointegration analysis suggest no evidence of long-run relationships among the variables. Nonetheless, there exists a short-run unidirectional causal relationship from GDP to electricity consumption for Nigeria–South Africa; all except Egypt can achieve 100% access to green electricity. The implication is that, through radical renewable electricity generation innovations, countries can achieve renewable-dominated electric power systems despite expected disruptions from the coronavirus pandemic. For sustainable energy planning, countries aiming to achieve 100% renewables is possible due to the radical transition pathways since it takes into account the volatility.
|