Atenolol sequestration using activated carbon derived from gasified Glyricidia sepium

Activated carbon (AC) derived from gasified Glyricidia sepium woodchip (GGSWAC) was prepared using KOH and CO2 activation via microwave radiation technique to remove atenolol (ATN) from aqueous solution. The surface area (SBET) and total pore volume (TPV) of GGSWAC were 483.07 m2/g and 0.255 cm3, re...

Full description

Bibliographic Details
Main Authors: Anis Atikah Ahmad, Azam Taufik Mohd Din, Nasehir Khan E.M. Yahaya, Jamilah Karim, Mohd Azmier Ahmad
Format: Article
Language:English
Published: Elsevier 2020-10-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220303208
Description
Summary:Activated carbon (AC) derived from gasified Glyricidia sepium woodchip (GGSWAC) was prepared using KOH and CO2 activation via microwave radiation technique to remove atenolol (ATN) from aqueous solution. The surface area (SBET) and total pore volume (TPV) of GGSWAC were 483.07 m2/g and 0.255 cm3, respectively. The n-BET model fits well with the isothermal data indicating a multilayer adsorption with the saturation capacity of 121, 143 and 163 mg/g at 30, 45 and 60 °C, respectively. The kinetic study showed that ATN adsorption followed Avrami model equation (R2 ≅ 0.99). Based on the thermodynamic parameters, the adsorption of ATN onto GGSWAC was endothermic (ΔHS = 234.17 kJ/mol) in the first layer of adsorption and exothermic in the subsequent layer (ΔHL = −165.62 kJ/mol). The ATN adsorption was controlled by both diffusion and chemisorption. In continuous operation, the Thomas (R2 = 0.9822) and Yoon–Nelson (R2 = 0.9817) models successfully predicted the ATN adsorption.
ISSN:1878-5352