A Review of Low-Voltage Renewable Microgrids: Generation Forecasting and Demand-Side Management Strategies

It is expected that distribution power systems will soon be able to connect a variety of microgrids from residential, commercial, and industrial users, and thus integrate a variety of distributed generation technologies, mainly renewable energy sources to supply their demands. Indeed, some authors a...

Full description

Bibliographic Details
Main Authors: Miguel Aybar-Mejía, Junior Villanueva, Deyslen Mariano-Hernández, Félix Santos, Angel Molina-García
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/17/2093
Description
Summary:It is expected that distribution power systems will soon be able to connect a variety of microgrids from residential, commercial, and industrial users, and thus integrate a variety of distributed generation technologies, mainly renewable energy sources to supply their demands. Indeed, some authors affirm that distribution networks will propose significant changes as a consequence of this massive integration of microgrids at the distribution level. Under this scenario, the control of distributed generation inverters, demand management systems, renewable resource forecasting, and demand predictions will allow better integration of such microgrid clusters to decongest power systems. This paper presents a review of microgrids connected at distribution networks and the solutions that facilitate their integration into such distribution network level, such as demand management systems, renewable resource forecasting, and demand predictions. Recent contributions focused on the application of microgrids in Low-Voltage distribution networks are also analyzed and reviewed in detail. In addition, this paper provides a critical review of the most relevant challenges currently facing electrical distribution networks, with an explicit focus on the massive interconnection of electrical microgrids and the future with relevant renewable energy source integration.
ISSN:2079-9292