Inside black holes with synchronized hair
Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-09-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269316303392 |
id |
doaj-1566a76ca9254a4fa7f9313cf6c2a52b |
---|---|
record_format |
Article |
spelling |
doaj-1566a76ca9254a4fa7f9313cf6c2a52b2020-11-24T20:44:47ZengElsevierPhysics Letters B0370-26931873-24452016-09-01760C27928710.1016/j.physletb.2016.06.078Inside black holes with synchronized hairYves Brihaye0Carlos Herdeiro1Eugen Radu2Physique-Mathématique, Universite de Mons-Hainaut, Mons, BelgiumDepartamento de Física da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, PortugalDepartamento de Física da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, PortugalRecently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.http://www.sciencedirect.com/science/article/pii/S0370269316303392 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yves Brihaye Carlos Herdeiro Eugen Radu |
spellingShingle |
Yves Brihaye Carlos Herdeiro Eugen Radu Inside black holes with synchronized hair Physics Letters B |
author_facet |
Yves Brihaye Carlos Herdeiro Eugen Radu |
author_sort |
Yves Brihaye |
title |
Inside black holes with synchronized hair |
title_short |
Inside black holes with synchronized hair |
title_full |
Inside black holes with synchronized hair |
title_fullStr |
Inside black holes with synchronized hair |
title_full_unstemmed |
Inside black holes with synchronized hair |
title_sort |
inside black holes with synchronized hair |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 1873-2445 |
publishDate |
2016-09-01 |
description |
Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers–Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers–Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair. |
url |
http://www.sciencedirect.com/science/article/pii/S0370269316303392 |
work_keys_str_mv |
AT yvesbrihaye insideblackholeswithsynchronizedhair AT carlosherdeiro insideblackholeswithsynchronizedhair AT eugenradu insideblackholeswithsynchronizedhair |
_version_ |
1716816684282544128 |