Summary: | The Hierarchical Diagnostic Classification Model (HDCM) reflects on the sequences of the presentation of the essential materials and attributes to answer the items of a test correctly. In this study, a foreign language reading comprehension test was analyzed employing HDCM and the generalized deterministic-input, noisy and gate (G-DINA) model to determine and compare respondents’ mastery profiles in the test’s predefined skills and to illustrate the relationships among the attributes involved in the test to capture the influence of sequential teaching of materials on increasing the probability of getting an item a correct answer. Furthermore, Differential Item Functioning (DIF) analysis was applied to detect whether the test functions as a reason for the gender gap in participants’ achievement. Finally, classification consistency and accuracy indices are studied. The results showed that the G-DINA and one of the HDCMs fit the data well. However, although the results of HDCM showed the existence of attribute dependencies in the reading comprehension test, the relative fit indices highlight a significant difference between the G-DINA and HDCM, favoring G-DINA. Moreover, results indicate that there is a significant difference between males and females in six items in favor of females. Besides, classification consistency and accuracy indices specify that the Iranian University Entrance Examination holds a 71% chance of categorizing a randomly selected test taker consistently on two distinct test settings and a 78% likelihood of accurately classifying any randomly selected student into the true latent classes. As a result, it can be concluded that the Iranian University Entrance Examination can be considered as a valid and reliable test.
|