DFT study of the effect in surface energy of metallic overlayers in semiconductors
<p>The surface energy of various systems: semiconductors (Ge and Si), metals (Ag and Pb) and metallic overlayers on semiconductors Ag/Ge and Pb/Si) have been calculated using a DFT approximation. The Pb(111) and Ag(111) adlayers on Si and Ge(111) surfaces had been modeled using the periodic su...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad San Francisco de Quito
2012-06-01
|
Series: | ACI Avances en Ciencias e Ingenierías |
Subjects: | |
Online Access: | http://revistas.usfq.edu.ec/index.php/avances/article/view/76 |
id |
doaj-151d6343313f45b6affd1dbd009ca2de |
---|---|
record_format |
Article |
spelling |
doaj-151d6343313f45b6affd1dbd009ca2de2021-10-02T18:24:10ZengUniversidad San Francisco de QuitoACI Avances en Ciencias e Ingenierías1390-53842528-77882012-06-014110.18272/aci.v4i1.7676DFT study of the effect in surface energy of metallic overlayers in semiconductorsJéssica Cuesta0Leonardo Basile1Silvia González2Universidad Técnica Particular de LojaEscuela Politécnica NacionalUniversidad Técnica Particular de Loja<p>The surface energy of various systems: semiconductors (Ge and Si), metals (Ag and Pb) and metallic overlayers on semiconductors Ag/Ge and Pb/Si) have been calculated using a DFT approximation. The Pb(111) and Ag(111) adlayers on Si and Ge(111) surfaces had been modeled using the periodic supercell approach. Self-consistent field energy periodic calculations for bulk and surfaces of Ge, Si, Pb and Ag, with 12, 11, 10, 9, 8, 7 and 6 layers and SC<sub>12-</sub><sub><em>n</em></sub>M<sub><em>n</em></sub> (where SC is Ge or Si; M is Ag and Pb, respectively and n is the number of layers) metallic adlayers on semiconductor super-system slab models were calculated using plane wave density functional theory, in particular employing the Perdew Wang (PW91) functional. The metallic adlayers on semiconductors modify its surface energy and vice versa. The values for SC<sub>12-</sub><sub><em>n</em></sub>M<sub><em>n</em></sub> systems follow a sinusoidal trend in similar way to for semiconductors, but softer. The surface energy values lay in between those corresponding to semiconductors and metals. These results indicate that if the number of metallic overlayers on a semiconductor can be controlled then the surface energy can be addressed.</p>http://revistas.usfq.edu.ec/index.php/avances/article/view/76Monocapas metálicasmetal-semiconductorPb/GeAg/SiDFT |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jéssica Cuesta Leonardo Basile Silvia González |
spellingShingle |
Jéssica Cuesta Leonardo Basile Silvia González DFT study of the effect in surface energy of metallic overlayers in semiconductors ACI Avances en Ciencias e Ingenierías Monocapas metálicas metal-semiconductor Pb/Ge Ag/Si DFT |
author_facet |
Jéssica Cuesta Leonardo Basile Silvia González |
author_sort |
Jéssica Cuesta |
title |
DFT study of the effect in surface energy of metallic overlayers in semiconductors |
title_short |
DFT study of the effect in surface energy of metallic overlayers in semiconductors |
title_full |
DFT study of the effect in surface energy of metallic overlayers in semiconductors |
title_fullStr |
DFT study of the effect in surface energy of metallic overlayers in semiconductors |
title_full_unstemmed |
DFT study of the effect in surface energy of metallic overlayers in semiconductors |
title_sort |
dft study of the effect in surface energy of metallic overlayers in semiconductors |
publisher |
Universidad San Francisco de Quito |
series |
ACI Avances en Ciencias e Ingenierías |
issn |
1390-5384 2528-7788 |
publishDate |
2012-06-01 |
description |
<p>The surface energy of various systems: semiconductors (Ge and Si), metals (Ag and Pb) and metallic overlayers on semiconductors Ag/Ge and Pb/Si) have been calculated using a DFT approximation. The Pb(111) and Ag(111) adlayers on Si and Ge(111) surfaces had been modeled using the periodic supercell approach. Self-consistent field energy periodic calculations for bulk and surfaces of Ge, Si, Pb and Ag, with 12, 11, 10, 9, 8, 7 and 6 layers and SC<sub>12-</sub><sub><em>n</em></sub>M<sub><em>n</em></sub> (where SC is Ge or Si; M is Ag and Pb, respectively and n is the number of layers) metallic adlayers on semiconductor super-system slab models were calculated using plane wave density functional theory, in particular employing the Perdew Wang (PW91) functional. The metallic adlayers on semiconductors modify its surface energy and vice versa. The values for SC<sub>12-</sub><sub><em>n</em></sub>M<sub><em>n</em></sub> systems follow a sinusoidal trend in similar way to for semiconductors, but softer. The surface energy values lay in between those corresponding to semiconductors and metals. These results indicate that if the number of metallic overlayers on a semiconductor can be controlled then the surface energy can be addressed.</p> |
topic |
Monocapas metálicas metal-semiconductor Pb/Ge Ag/Si DFT |
url |
http://revistas.usfq.edu.ec/index.php/avances/article/view/76 |
work_keys_str_mv |
AT jessicacuesta dftstudyoftheeffectinsurfaceenergyofmetallicoverlayersinsemiconductors AT leonardobasile dftstudyoftheeffectinsurfaceenergyofmetallicoverlayersinsemiconductors AT silviagonzalez dftstudyoftheeffectinsurfaceenergyofmetallicoverlayersinsemiconductors |
_version_ |
1716849151076990976 |